BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35477977)

  • 21. Improving the sensitivity of bacterial bioreporters for heavy metals.
    Hynninen A; Tönismann K; Virta M
    Bioeng Bugs; 2010; 1(2):132-8. PubMed ID: 21326938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligonucleotide-induced regulation of the oxidase-mimicking activity of octahedral Mn
    Wang J; Wang J; Zhou P; Tao H; Wang X; Wu Y
    Mikrochim Acta; 2020 Jan; 187(2):99. PubMed ID: 31912245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium.
    Kahru A; Ivask A; Kasemets K; Põllumaa L; Kurvet I; François M; Dubourguier HC
    Environ Toxicol Chem; 2005 Nov; 24(11):2973-82. PubMed ID: 16398136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors.
    Liao VH; Chien MT; Tseng YY; Ou KL
    Environ Pollut; 2006 Jul; 142(1):17-23. PubMed ID: 16298031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.
    Bereza-Malcolm L; Aracic S; Kannan R; Mann G; Franks AE
    Biosens Bioelectron; 2017 Aug; 94():380-387. PubMed ID: 28319906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel, environmentally friendly dual-signal water toxicity biosensor developed through the continuous release of Fe
    Yu D; Li R; Rong K; Fang Y; Liu L; Yu H; Dong S
    Biosens Bioelectron; 2023 Jan; 220():114864. PubMed ID: 36395734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of Cadmium in Human Biospecimens by a Cadmium-Selective Whole-Cell Biosensor Based on Deoxyviolacein.
    Zhang J; Guo Y; Lin YR; Ma BC; Ge XR; Zhang WQ; Zhang NX; Yang SM; Hui CY
    ACS Biomater Sci Eng; 2024 Jun; 10(6):4046-4058. PubMed ID: 38722544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linking biosensor responses to Cd, Cu and Zn partitioning in soils.
    Dawson JJ; Campbell CD; Towers W; Cameron CM; Paton GI
    Environ Pollut; 2006 Aug; 142(3):493-500. PubMed ID: 16325972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-based engineered Escherichia coli biosensor for sensitive and specific detection of Cd(II) in drinking water.
    Wei Y; Shi D; Chen T; Zhou S; Yang Z; Li H; Yang D; Li J; Jin M
    Chemosphere; 2024 Jun; 362():142607. PubMed ID: 38876330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of the content of heavy metals related to environmental load in urban areas in Slovakia.
    Kozak M; Kralova E; Sviatko P; Bilek J; Bugarsky A
    Bratisl Lek Listy; 2002; 103(7-8):231-7. PubMed ID: 12518994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A portable microfluidic device-based Fe
    Swain KK; Balasubramaniam R; Bhand S
    Prep Biochem Biotechnol; 2020; 50(10):1000-1013. PubMed ID: 32564658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolved Biosensor with High Sensitivity and Specificity for Measuring Cadmium in Actual Environmental Samples.
    Cai Y; Zhu K; Shen L; Ma J; Bao L; Chen D; Wei L; Wei N; Liu B; Wu Y; Chen S
    Environ Sci Technol; 2022 Jul; 56(14):10062-10071. PubMed ID: 35762704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a living mammalian cell-based biosensor for the monitoring and evaluation of synergetic toxicity of cadmium and deoxynivalenol.
    Guo H; Ji J; Sun J; Zhang Y; Sun X
    Sci Total Environ; 2021 Jun; 771():144823. PubMed ID: 33545470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Characteristics and Assessment of Heavy Metal Contamination in Soils of Industrial Regions in the Yangtze River Economic Belt].
    Zhang Y; Zhou XQ; Zeng XM; Feng J; Liu YR
    Huan Jing Ke Xue; 2022 Apr; 43(4):2062-2070. PubMed ID: 35393830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA-based biosensor.
    Babkina SS; Ulakhovich NA
    Anal Chem; 2005 Sep; 77(17):5678-85. PubMed ID: 16131081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation and translocation of food chain in soil-mulberry (Morus alba L.)-silkworm (Bombyx mori) under single and combined stress of lead and cadmium.
    Si L; Zhang J; Hussain A; Qiao Y; Zhou J; Wang X
    Ecotoxicol Environ Saf; 2021 Jan; 208():111582. PubMed ID: 33396105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole cell microalgal-cyanobacterial array biosensor for monitoring Cd, Cr and Zn in aquatic systems.
    Rathnayake IVN; Munagamage T; Pathirathne A; Megharaj M
    Water Sci Technol; 2021 Oct; 84(7):1579-1593. PubMed ID: 34662298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A living plant cell-based biosensor for real-time monitoring invisible damage of plant cells under heavy metal stress.
    Wang X; Cheng M; Yang Q; Wei H; Xia A; Wang L; Ben Y; Zhou Q; Yang Z; Huang X
    Sci Total Environ; 2019 Dec; 697():134097. PubMed ID: 31484090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.
    Yang SH; Cheng KC; Liao VH
    Chemosphere; 2017 Nov; 186():446-452. PubMed ID: 28806672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.