These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35477999)

  • 1. [Research progress on interference in the identification of accelerants in a fire scene].
    Yin G; Qian P; Liqiu F; Jin J; Liu L; Zhang J
    Se Pu; 2022 May; 40(5):401-408. PubMed ID: 35477999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of accelerant in fire debris by pyrolysis gas chromatography-mass spectrometry].
    Zhang J; Liu J
    Se Pu; 2019 Apr; 37(4):426-431. PubMed ID: 30977346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of kerosene combustion atmosphere on the mild steel oxide layer.
    Xie D; Hong H; Duo S; Li Q
    Sci Rep; 2022 Jan; 12(1):379. PubMed ID: 35013478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forensic investigation of arson residue by infrared and Raman spectroscopy: From conventional to non-destructive techniques.
    Yadav VK; Nigam K; Srivastava A
    Med Sci Law; 2020 Jul; 60(3):206-215. PubMed ID: 32279580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis of combustion residue of the typical plastic carrier and accelerant by flash gas chromatography-mass spectrometry].
    Zhang J; Liu J
    Se Pu; 2018 Jul; 36(7):693-699. PubMed ID: 30136543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of microbial degradation effects based on generalized regression neural network on the detection of accelerants].
    Fang Q; Liu L
    Se Pu; 2019 Jun; 37(6):655-660. PubMed ID: 31152517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of thermal environment in fire on the identification of gasoline combustion residues.
    Jin J; Chi J; Xue T; Xu J; Liu L; Li Y; Deng L; Zhang J
    Forensic Sci Int; 2020 Oct; 315():110430. PubMed ID: 32738673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fire accelerant classification from GC-MS data of suspected arson cases using machine-learning models.
    Park C; Lee JB; Park W; Lee DK
    Forensic Sci Int; 2023 May; 346():111646. PubMed ID: 37001430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.
    Gravett MR; Hopkins FB; Self AJ; Webb AJ; Timperley CM; Riches JR
    Anal Bioanal Chem; 2014 Aug; 406(21):5121-35. PubMed ID: 24972874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential dangers of accelerant use in arson.
    Heath K; Kobus H; Byard RW
    J Forensic Leg Med; 2011 Feb; 18(2):49-51. PubMed ID: 21315296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose.
    Ferreiro-González M; Barbero GF; Palma M; Ayuso J; Álvarez JA; Barroso CG
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Likelihood ratio methods for forensic comparison of evaporated gasoline residues.
    Vergeer P; Bolck A; Peschier LJ; Berger CE; Hendrikse JN
    Sci Justice; 2014 Dec; 54(6):401-11. PubMed ID: 25498926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of a fire scene with ultraviolet light: An assessment of the possible utilisation of ultraviolet light at fire scenes and subsequent recommendations for procedures.
    Ljungkvist E; Thomsen B
    Forensic Sci Int; 2019 Apr; 297():284-292. PubMed ID: 30851605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional analysis for identification of arson accelerants by electron ionization Fourier transform ion cyclotron resonance high-resolution mass spectrometry.
    Rodgers RP; Blumer EN; Freitas MA; Marshall AG
    J Forensic Sci; 2001 Mar; 46(2):268-79. PubMed ID: 11305428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The most remarkable interference to gasoline identification from polystyrene-co-butadiene and the corresponding cause.
    Jin J; Li K; Chi J; Li S; Zhang J; Lu L
    J Chromatogr A; 2021 Sep; 1654():462462. PubMed ID: 34411835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample preparation for the analysis of fire debris - Past and present.
    Kerr TJ
    J Sep Sci; 2018 Nov; 41(21):4055-4066. PubMed ID: 30194809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.