These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35477999)

  • 21. Sample preparation for the analysis of fire debris - Past and present.
    Kerr TJ
    J Sep Sci; 2018 Nov; 41(21):4055-4066. PubMed ID: 30194809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial intelligence and thermodynamics help solving arson cases.
    Korver S; Schouten E; Moultos OA; Vergeer P; Grutters MMP; Peschier LJC; Vlugt TJH; Ramdin M
    Sci Rep; 2020 Nov; 10(1):20502. PubMed ID: 33239698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research Progress on Biological Evidence Identification in Fire Scenes.
    Yao YR; Jin J; Wang YJ; Zhang JZ; Li YZ; Xu YX
    Fa Yi Xue Za Zhi; 2024 Feb; 40(1):64-69. PubMed ID: 38500463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Accelerants in Fire Debris - Data Interpretation.
    Bertsch W
    Forensic Sci Rev; 1997 Jun; 9(1):1-22. PubMed ID: 26270863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field test kits for collection of ignitable liquids and ignitable liquid residues used by the NSW fire scene investigators.
    Burda K; Black M; Djulamerovic S; Darwen K; Hollier K
    Forensic Sci Int; 2016 Jul; 264():70-81. PubMed ID: 27037662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acid alteration of several ignitable liquids of potential use in arsons.
    Martín-Alberca C; Carrascosa H; San Román I; Bartolomé L; García-Ruiz C
    Sci Justice; 2018 Jan; 58(1):7-16. PubMed ID: 29332697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review: Recent advancements and moving trends in chemical analysis of fire debris.
    Low Y; Tyrrell E; Gillespie E; Quigley C
    Forensic Sci Int; 2023 Apr; 345():111623. PubMed ID: 36921374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry.
    Schwartz Z; An Y; Konstantynova KI; Jackson GP
    Forensic Sci Int; 2013 Dec; 233(1-3):365-73. PubMed ID: 24314542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.
    Nowlan M; Stuart AW; Basara GJ; Sandercock PM
    J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of the Weathering Process of Gasoline by eNose.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Palma M; Barroso CG
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of the type of accelerant, type of burned material, time of burning and availability of air on the possibility of detection of accelerants traces.
    Borusiewicz R; Zieba-Palus J; Zadora G
    Forensic Sci Int; 2006 Jul; 160(2-3):115-26. PubMed ID: 16260105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Headspace sorptive extraction for the detection of combustion accelerants in fire debris.
    Cacho JI; Campillo N; Aliste M; Viñas P; Hernández-Córdoba M
    Forensic Sci Int; 2014 May; 238():26-32. PubMed ID: 24631666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contemporary Sample Preparation Methods for the Detection of Ignitable Liquids in Suspect Arson Cases.
    Bertsch W; Ren Q
    Forensic Sci Rev; 1999 Dec; 11(2):141-56. PubMed ID: 26255903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-accelerant approach for rapid shelf-life determination of beverages in polymeric packaging.
    Muniandy A; Benyathiar P; Ozadali F; Mishra DK
    Food Res Int; 2023 Nov; 173(Pt 1):113318. PubMed ID: 37803627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fire investigation and ignitable liquid residue analysis--a review: 2001-2007.
    Sandercock PM
    Forensic Sci Int; 2008 Apr; 176(2-3):93-110. PubMed ID: 17949931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comprehensive Study of the Alteration of Ignitable Liquids by Weathering and Microbial Degradation.
    Turner DA; Williams M; Sigman MA; Goodpaster JV
    J Forensic Sci; 2018 Jan; 63(1):58-65. PubMed ID: 28464314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of canines for accelerant detection at fire scenes.
    Kurz ME; Billard M; Rettig M; Augustiniak J; Lange J; Larsen M; Warrick R; Mohns T; Bora R; Broadus K
    J Forensic Sci; 1994 Nov; 39(6):1528-36. PubMed ID: 7815032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.