BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35478291)

  • 1. Concomitant knockout of target and transporter genes in filamentous fungi by genome co-editing.
    Tamano K
    Microbiologyopen; 2022 Apr; 11(2):e1280. PubMed ID: 35478291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double knockout of two target genes via genome co-editing using a nitrate transporter gene
    Tamano K; Takayama H
    J Biosci Bioeng; 2024 Jul; 138(1):36-43. PubMed ID: 38653596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae.
    Katayama T; Maruyama JI
    J Biosci Bioeng; 2022 Apr; 133(4):353-361. PubMed ID: 35101371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering.
    Ding Y; Wang KF; Wang WJ; Ma YR; Shi TQ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4313-4324. PubMed ID: 31016357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas Genome Editing in Filamentous Fungi.
    Rozhkova AM; Kislitsin VY
    Biochemistry (Mosc); 2021 Jan; 86(Suppl 1):S120-S139. PubMed ID: 33827404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-homologous end-joining-deficient filamentous fungal strains mitigate the impact of off-target mutations during the application of CRISPR/Cas9.
    Garrigues S; Peng M; Kun RS; de Vries RP
    mBio; 2023 Aug; 14(4):e0066823. PubMed ID: 37486124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art.
    Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout of the SREBP system increases production of the polyketide FR901512 in filamentous fungal sp. No. 14919 and lovastatin in Aspergillus terreus ATCC20542.
    Itoh H; Miura A; Matsui M; Arazoe T; Nishida K; Kumagai T; Arita M; Tamano K; Machida M; Shibata T
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1393-1405. PubMed ID: 29270733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum).
    Khang CH; Park SY; Rho HS; Lee YH; Kang S
    Methods Mol Biol; 2006; 344():403-20. PubMed ID: 17033082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus.
    Arazoe T; Ogawa T; Miyoshi K; Yamato T; Ohsato S; Sakuma T; Yamamoto T; Arie T; Kuwata S
    Biotechnol Bioeng; 2015 Jul; 112(7):1335-42. PubMed ID: 25683503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality.
    Shen JY; Zhao Q; He QL
    ACS Synth Biol; 2023 Jul; 12(7):1908-1923. PubMed ID: 37404005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation.
    Nakamura H; Katayama T; Okabe T; Iwashita K; Fujii W; Kitamoto K; Maruyama JI
    J Gen Appl Microbiol; 2017 Jul; 63(3):172-178. PubMed ID: 28484116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel mutagenesis and screening technologies for food microorganisms: advances and prospects.
    Yu Q; Li Y; Wu B; Hu W; He M; Hu G
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1517-1531. PubMed ID: 31919586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel pyrithiamine resistance marker gene thiI for genome co-editing in Aspergillus oryzae.
    Todokoro T; Bando H; Kotaka A; Tsutsumi H; Hata Y; Ishida H
    J Biosci Bioeng; 2020 Sep; 130(3):227-232. PubMed ID: 32487497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular tools for gene manipulation in filamentous fungi.
    Wang S; Chen H; Tang X; Zhang H; Chen W; Chen YQ
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8063-8075. PubMed ID: 28965220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi.
    Ullah M; Xia L; Xie S; Sun S
    Biotechnol Appl Biochem; 2020 Nov; 67(6):835-851. PubMed ID: 33179815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus
    Jin FJ; Hu S; Wang BT; Jin L
    Front Microbiol; 2021; 12():644404. PubMed ID: 33708187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes.
    Schuster M; Kahmann R
    Fungal Genet Biol; 2019 Sep; 130():43-53. PubMed ID: 31048007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.