These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35478574)

  • 1. A review of shape memory polymers based on the intrinsic structures of their responsive switches.
    Yang L; Lou J; Yuan J; Deng J
    RSC Adv; 2021 Aug; 11(46):28838-28850. PubMed ID: 35478574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications.
    Xia Y; He Y; Zhang F; Liu Y; Leng J
    Adv Mater; 2021 Feb; 33(6):e2000713. PubMed ID: 32969090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of chitosan-based shape memory materials: Stimuli-responsiveness, multifunctionalities and applications.
    Yang S; Song Z; He Z; Ye X; Li J; Wang W; Zhang D; Li Y
    Carbohydr Polym; 2024 Jan; 323():121411. PubMed ID: 37940246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties.
    Qi X; Pan C; Zhang L; Yue D
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3497-3506. PubMed ID: 36598772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.
    Chan BQ; Low ZW; Heng SJ; Chan SY; Owh C; Loh XJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10070-87. PubMed ID: 27018814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable polyester shape memory polymers: Recent advances in design, material properties and applications.
    Zhang X; Tan BH; Li Z
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():1061-1074. PubMed ID: 30184729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in shape memory polymeric nanocomposites for biomedical applications and beyond.
    Zheng Y; Du Y; Chen L; Mao W; Pu Y; Wang S; Wang D
    Biomater Sci; 2024 Apr; 12(8):2033-2040. PubMed ID: 38517138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically Responsive Circularly Polarized Luminescence from Cellulose-Nanocrystal-Based Shape-Memory Polymers.
    Xu M; Xu Z; Soto MA; Xu YT; Hamad WY; MacLachlan MJ
    Adv Mater; 2023 Jul; 35(29):e2301060. PubMed ID: 37019850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers.
    Hardy JG; Palma M; Wind SJ; Biggs MJ
    Adv Mater; 2016 Jul; 28(27):5717-24. PubMed ID: 27120512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape Memory Polymers Based on Supramolecular Interactions.
    Jiang ZC; Xiao YY; Kang Y; Pan M; Li BJ; Zhang S
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20276-20293. PubMed ID: 28553712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-responsive supramolecular polymers in aqueous solution.
    Ma X; Tian H
    Acc Chem Res; 2014 Jul; 47(7):1971-81. PubMed ID: 24669851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in degradable lactide-based shape-memory polymers.
    Balk M; Behl M; Wischke C; Zotzmann J; Lendlein A
    Adv Drug Deliv Rev; 2016 Dec; 107():136-152. PubMed ID: 27262926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatically Programmable Shape-Memory Polymers Based on Asymmetric Swelling of Bilayer Structures.
    Tang J; Zhou Y; Wan L; Huang F
    Macromol Rapid Commun; 2018 May; 39(9):e1800039. PubMed ID: 29517176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge.
    Xiao R; Huang WM
    Macromol Biosci; 2020 Aug; 20(8):e2000108. PubMed ID: 32567193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape Memory Polymers as Smart Materials: A Review.
    Dayyoub T; Maksimkin AV; Filippova OV; Tcherdyntsev VV; Telyshev DV
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-memory surfaces for cell mechanobiology.
    Ebara M
    Sci Technol Adv Mater; 2015 Feb; 16(1):014804. PubMed ID: 27877747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Scalable Approach toward Shape Memory Polymer Composites via "Spring-Buckle" Microstructure Design.
    Wu X; Han Y; Zhou Z; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13657-13665. PubMed ID: 28358194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.