These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35478625)
1. Copolyesters of ε-caprolactone and l-lactide catalyzed by a tetrabutylammonium phthalimide- Feng Z; Wu L; Dong H; Liu B; Cheng R RSC Adv; 2021 May; 11(31):19021-19028. PubMed ID: 35478625 [TBL] [Abstract][Full Text] [Related]
2. A Comprehensive Investigation of the Structural, Thermal, and Biological Properties of Fully Randomized Biomedical Polyesters Synthesized with a Nontoxic Bismuth(III) Catalyst. Domańska IM; Zgadzaj A; Kowalczyk S; Zalewska A; Oledzka E; Cieśla K; Plichta A; Sobczak M Molecules; 2022 Feb; 27(3):. PubMed ID: 35164403 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Fernández J; Etxeberria A; Sarasua JR J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288 [TBL] [Abstract][Full Text] [Related]
4. Bulk Organocatalytic Synthetic Access to Statistical Copolyesters from l-Lactide and ε-Caprolactone Using Benzoic Acid. Mezzasalma L; Harrisson S; Saba S; Loyer P; Coulembier O; Taton D Biomacromolecules; 2019 May; 20(5):1965-1974. PubMed ID: 30964279 [TBL] [Abstract][Full Text] [Related]
5. Phosphazene Functionalized Silsesquioxane-Based Porous Polymer as Thermally Stable and Reusable Catalyst for Bulk Ring-Opening Polymerization of ε-Caprolactone. Piskun YA; Ksendzov EA; Resko AV; Soldatov MA; Timashev P; Liu H; Vasilenko IV; Kostjuk SV Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904533 [TBL] [Abstract][Full Text] [Related]
6. Poly(butylene succinate- Núñez M; Muñoz-Guerra S; Martínez de Ilarduya A Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451219 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization. Dai S; Li Z Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675 [TBL] [Abstract][Full Text] [Related]
8. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA. Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877 [TBL] [Abstract][Full Text] [Related]
9. Syntheses, structures and catalytic activity of tetranuclear Mg complexes in the ROP of cyclic esters under industrially relevant conditions. Ghosh S; Wölper C; Tjaberings A; Gröschel AH; Schulz S Dalton Trans; 2020 Jan; 49(2):375-387. PubMed ID: 31829382 [TBL] [Abstract][Full Text] [Related]
10. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization. Yuan W; Yuan J; Zhang F; Xie X Biomacromolecules; 2007 Apr; 8(4):1101-8. PubMed ID: 17326679 [TBL] [Abstract][Full Text] [Related]
11. The Novel Gallium Aminobisphenolate Initiator of the Ring-Opening Copolymerization of L-Lactide and ε-Caprolactone: A Computational Study. Zabalov MV; Mankaev BN; Egorov MP; Karlov SS Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555162 [TBL] [Abstract][Full Text] [Related]
12. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field. Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562 [TBL] [Abstract][Full Text] [Related]
13. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide. Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093 [TBL] [Abstract][Full Text] [Related]
14. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes. Darensbourg DJ; Karroonnirun O; Wilson SJ Inorg Chem; 2011 Jul; 50(14):6775-87. PubMed ID: 21675736 [TBL] [Abstract][Full Text] [Related]
15. DFT Visualization and Experimental Evidence of BHT-Mg-Catalyzed Copolymerization of Lactides, Lactones and Ethylene Phosphates. Nifant'ev I; Shlyakhtin A; Kosarev M; Gavrilov D; Karchevsky S; Ivchenko P Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31658688 [TBL] [Abstract][Full Text] [Related]
16. Scalable and Room-Temperature Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Active Lithium Tetramethylene-Tethered Akkravijitkul N; Cheechana N; Rithchumpon P; Junpirom T; Limwanich W; Nalampang K; Thavornyutikarn P; Punyodom W; Meepowpan P J Org Chem; 2022 Sep; 87(18):12052-12064. PubMed ID: 36073019 [TBL] [Abstract][Full Text] [Related]
17. Lanthanide borohydride complexes supported by diaminobis(phenoxide) ligands for the polymerization of epsilon-caprolactone and L- and rac-lactide. Bonnet F; Cowley AR; Mountford P Inorg Chem; 2005 Nov; 44(24):9046-55. PubMed ID: 16296860 [TBL] [Abstract][Full Text] [Related]
18. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer. Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693 [TBL] [Abstract][Full Text] [Related]
19. Lipase-Catalyzed Reactive Extrusion: Copolymerization of ε-Caprolactone and ω-Pentadecalactone. Li C; Xu W; Lu Y; Gross RA Macromol Rapid Commun; 2020 Nov; 41(22):e2000417. PubMed ID: 33047442 [TBL] [Abstract][Full Text] [Related]
20. Ring-opening bulk polymerization of epsilon-caprolactone and trimethylene carbonate catalyzed by lipase Novozym 435. Deng F; Gross RA Int J Biol Macromol; 1999; 25(1-3):153-9. PubMed ID: 10416662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]