These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35479267)
1. Enhancing Palliative Care for Patients With Advanced Heart Failure Through Simple Prognostication Tools: A Comparison of the Surprise Question, the Number of Previous Heart Failure Hospitalizations, and the Seattle Heart Failure Model for Predicting 1-Year Survival. Blum M; Gelfman LP; McKendrick K; Pinney SP; Goldstein NE Front Cardiovasc Med; 2022; 9():836237. PubMed ID: 35479267 [TBL] [Abstract][Full Text] [Related]
2. From statistical significance to clinical relevance: A simple algorithm to integrate brain natriuretic peptide and the Seattle Heart Failure Model for risk stratification in heart failure. AbouEzzeddine OF; French B; Mirzoyev SA; Jaffe AS; Levy WC; Fang JC; Sweitzer NK; Cappola TP; Redfield MM J Heart Lung Transplant; 2016 Jun; 35(6):714-21. PubMed ID: 27021278 [TBL] [Abstract][Full Text] [Related]
3. Predicting 1-Year Mortality in Outpatients With Heart Failure With Reduced Left Ventricular Ejection Fraction: Do Empiric Models Outperform Physician Intuitive Estimates? A Multicenter Cohort Study. Alba AC; Buchan TA; Saha S; Fan S; Demers C; Poon S; Mak S; Al-Hesayen A; Toma M; Zieroth S; Anderson K; Porepa L; Chih S; Giannetti N; Rac V; Levy WC; Ross HJ; Guyatt GH Circ Heart Fail; 2023 Jul; 16(7):e010312. PubMed ID: 37337896 [TBL] [Abstract][Full Text] [Related]
4. Validation of the Seattle Heart Failure Model in a community-based heart failure population and enhancement by adding B-type natriuretic peptide. May HT; Horne BD; Levy WC; Kfoury AG; Rasmusson KD; Linker DT; Mozaffarian D; Anderson JL; Renlund DG Am J Cardiol; 2007 Aug; 100(4):697-700. PubMed ID: 17697831 [TBL] [Abstract][Full Text] [Related]
5. Performance of Prognostic Risk Scores in Elderly Chinese Patients with Heart Failure. Cheng Y; Chai K; Zhu W; Wan Y; Liang Y; Du M; Li Y; Sun N; Yang J; Wang H Clin Interv Aging; 2021; 16():1669-1677. PubMed ID: 34556979 [TBL] [Abstract][Full Text] [Related]
6. Validation and Recalibration of Seattle Heart Failure Model in Japanese Acute Heart Failure Patients. Shiraishi Y; Kohsaka S; Nagai T; Goda A; Mizuno A; Nagatomo Y; Sujino Y; Fukuoka R; Sawano M; Kohno T; Fukuda K; Anzai T; Shadman R; Dardas T; Levy WC; Yoshikawa T J Card Fail; 2019 Jul; 25(7):561-567. PubMed ID: 30099192 [TBL] [Abstract][Full Text] [Related]
7. Validation of the Surprise Question and the Development of a Multivariable Model. Davis M; Vanenkevort E; Young A; Wojtowicz M; Lagerman B; Gupta M; Adonizio C; Panikkar R J Pain Symptom Manage; 2023 May; 65(5):456-464. PubMed ID: 36736500 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Seattle heart failure model and cardiopulmonary exercise capacity for prediction of death in patients with chronic ischemic heart failure and intracoronary progenitor cell application. Honold J; DeRosa S; Spyridopoulos I; Fischer-Rasokat U; Seeger FH; Leistner D; Lotz S; Levy WC; Zeiher AM; Assmus B Clin Cardiol; 2013 Mar; 36(3):153-9. PubMed ID: 23377956 [TBL] [Abstract][Full Text] [Related]
9. Utility of the Seattle Heart Failure Model for palliative care referral in advanced ambulatory heart failure. Ng Fat Hing N; MacIver J; Chan D; Liu H; Lu YTL; Malik A; Wang VN; Levy WC; Ross HJ; Alba AC BMJ Support Palliat Care; 2018 Dec; ():. PubMed ID: 30523073 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of Seattle Heart Failure Model and HeartMate II Risk Score in Non-Inotrope-Dependent Advanced Heart Failure Patients: Insights From the ROADMAP Study (Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients). Lanfear DE; Levy WC; Stehlik J; Estep JD; Rogers JG; Shah KB; Boyle AJ; Chuang J; Farrar DJ; Starling RC Circ Heart Fail; 2017 May; 10(5):. PubMed ID: 28465311 [TBL] [Abstract][Full Text] [Related]
11. Utility of the Seattle Heart Failure Model in patients with advanced heart failure. Kalogeropoulos AP; Georgiopoulou VV; Giamouzis G; Smith AL; Agha SA; Waheed S; Laskar S; Puskas J; Dunbar S; Vega D; Levy WC; Butler J J Am Coll Cardiol; 2009 Jan; 53(4):334-42. PubMed ID: 19161882 [TBL] [Abstract][Full Text] [Related]
12. Impact of renal dysfunction on the Seattle Heart Failure Model. Vakil KP; Dardas T; Dhar S; Moorman A; Anand I; Maggioni A; Linker DT; Mozaffarian D; Levy WC J Heart Lung Transplant; 2014 Feb; 33(2):163-9. PubMed ID: 24315784 [TBL] [Abstract][Full Text] [Related]
13. The Surprise Question Can Be Used to Identify Heart Failure Patients in the Emergency Department Who Would Benefit From Palliative Care. Aaronson EL; George N; Ouchi K; Zheng H; Bowman J; Monette D; Jacobsen J; Jackson V J Pain Symptom Manage; 2019 May; 57(5):944-951. PubMed ID: 30776539 [TBL] [Abstract][Full Text] [Related]
14. Surprise Question and Performance Status Indicate Urgency of Palliative Care Needs in Patients with Advanced Cancer at the Emergency Department: An Observational Cohort Study. Verhoef MJ; de Nijs EJM; Fiocco M; Heringhaus C; Horeweg N; van der Linden YM J Palliat Med; 2020 Jun; 23(6):801-808. PubMed ID: 31880489 [No Abstract] [Full Text] [Related]
15. The Barcelona Bio-Heart Failure risk calculator may predict 1-year mortality in patients with advanced heart failure. Szczurek-Wasilewicz W; Skrzypek M; Karmański A; Jurkiewicz M; Gąsior M; Szyguła-Jurkiewicz B Pol Arch Intern Med; 2024 Aug; 134(7-8):. PubMed ID: 38804895 [TBL] [Abstract][Full Text] [Related]
16. Performance of risk models to predict mortality risk for patients with heart failure: evaluation in an integrated health system. Ahmad FS; Hu TL; Adler ED; Petito LC; Wehbe RM; Wilcox JE; Mutharasan RK; Nardone B; Tadel M; Greenberg B; Yagil A; Campagnari C Clin Res Cardiol; 2024 Sep; 113(9):1343-1354. PubMed ID: 38565710 [TBL] [Abstract][Full Text] [Related]
17. Selecting patients for heart transplantation: comparison of the Heart Failure Survival Score (HFSS) and the Seattle heart failure model (SHFM). Goda A; Williams P; Mancini D; Lund LH J Heart Lung Transplant; 2011 Nov; 30(11):1236-43. PubMed ID: 21764604 [TBL] [Abstract][Full Text] [Related]
18. Multiparametric prognostic scores in chronic heart failure with reduced ejection fraction: a long-term comparison. Agostoni P; Paolillo S; Mapelli M; Gentile P; Salvioni E; Veglia F; Bonomi A; Corrà U; Lagioia R; Limongelli G; Sinagra G; Cattadori G; Scardovi AB; Metra M; Carubelli V; Scrutinio D; Raimondo R; Emdin M; Piepoli M; Magrì D; Parati G; Caravita S; Re F; Cicoira M; Minà C; Correale M; Frigerio M; Bussotti M; Oliva F; Battaia E; Belardinelli R; Mezzani A; Pastormerlo L; Guazzi M; Badagliacca R; Di Lenarda A; Passino C; Sciomer S; Zambon E; Pacileo G; Ricci R; Apostolo A; Palermo P; Contini M; Clemenza F; Marchese G; Gargiulo P; Binno S; Lombardi C; Passantino A; Filardi PP Eur J Heart Fail; 2018 Apr; 20(4):700-710. PubMed ID: 28949086 [TBL] [Abstract][Full Text] [Related]
19. Incremental and independent value of cardiopulmonary exercise test measures and the Seattle Heart Failure Model for prediction of risk in patients with heart failure. Dardas T; Li Y; Reed SD; O'Connor CM; Whellan DJ; Ellis SJ; Schulman KA; Kraus WE; Forman DE; Levy WC J Heart Lung Transplant; 2015 Aug; 34(8):1017-23. PubMed ID: 25940075 [TBL] [Abstract][Full Text] [Related]
20. Machine learning-based model for predicting 1 year mortality of hospitalized patients with heart failure. Tohyama T; Ide T; Ikeda M; Kaku H; Enzan N; Matsushima S; Funakoshi K; Kishimoto J; Todaka K; Tsutsui H ESC Heart Fail; 2021 Oct; 8(5):4077-4085. PubMed ID: 34390311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]