BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35479335)

  • 1. Direct synthesis of amides and imines by dehydrogenative homo or cross-coupling of amines and alcohols catalyzed by Cu-MOF.
    Anbardan SZ; Mokhtari J; Yari A; Bozcheloei AH
    RSC Adv; 2021 Jun; 11(34):20788-20793. PubMed ID: 35479335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Ligand Effects on Ruthenium Catalyst Activity for Selectively Preparing Imines or Amides by Dehydrogenative Coupling Reactions of Alcohols and Amines.
    Higuchi T; Tagawa R; Iimuro A; Akiyama S; Nagae H; Mashima K
    Chemistry; 2017 Sep; 23(52):12795-12804. PubMed ID: 28557018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot synthesis of amides
    Jamalifard S; Mokhtari J; Mirjafary Z
    RSC Adv; 2019 Jul; 9(39):22749-22754. PubMed ID: 35519471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.
    Zultanski SL; Zhao J; Stahl SS
    J Am Chem Soc; 2016 May; 138(20):6416-9. PubMed ID: 27171973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceptorless dehydrogenative synthesis of primary amides from alcohols and ammonia.
    Luo J; Zhou QQ; Montag M; Ben-David Y; Milstein D
    Chem Sci; 2022 Mar; 13(13):3894-3901. PubMed ID: 35432908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-Catalyzed Formylation of Amines by using Methanol as the C1 Source.
    Pichardo MC; Tavakoli G; Armstrong JE; Wilczek T; Thomas BE; Prechtl MHG
    ChemSusChem; 2020 Mar; 13(5):882-887. PubMed ID: 31916381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of imines from the coupling reaction of alcohols and amines catalyzed by phosphine-free cobalt(II) complexes.
    Mahato J; Bera PS; Saha TK
    Org Biomol Chem; 2024 Jun; 22(22):4528-4535. PubMed ID: 38752768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A porous Anderson-type polyoxometalate-based metal-organic framework as a multifunctional platform for selective oxidative coupling with amines.
    Tan HR; Zhou X; You H; Zheng Q; Zhao SY; Xuan W
    Dalton Trans; 2023 Nov; 52(45):17019-17029. PubMed ID: 37933953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform Cu/chitosan beads as a green and reusable catalyst for facile synthesis of imines
    Chutimasakul T; Na Nakhonpanom P; Tirdtrakool W; Intanin A; Bunchuay T; Chantiwas R; Tantirungrotechai J
    RSC Adv; 2020 May; 10(35):21009-21018. PubMed ID: 35517779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superparamagnetic Fe(OH)3@Fe3O4 Nanoparticles: An Efficient and Recoverable Catalyst for Tandem Oxidative Amidation of Alcohols with Amine Hydrochloride Salts.
    Arefi M; Saberi D; Karimi M; Heydari A
    ACS Comb Sci; 2015 Jun; 17(6):341-7. PubMed ID: 25946638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-hetero-dehydrogenative coupling reaction of phosphites: a catalytic metal-free phosphorylation of amines and alcohols.
    Dhineshkumar J; Prabhu KR
    Org Lett; 2013 Dec; 15(23):6062-5. PubMed ID: 24219013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic Oxidation of Primary Amines to Imines in Water using a Cobalt Complex as Recyclable Catalyst under Mild Conditions.
    Hazra S; Pilania P; Deb M; Kushawaha AK; Elias AJ
    Chemistry; 2018 Oct; 24(59):15766-15771. PubMed ID: 30112828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pt-Sn/γ-Al2O3-catalyzed highly efficient direct synthesis of secondary and tertiary amines and imines.
    He W; Wang L; Sun C; Wu K; He S; Chen J; Wu P; Yu Z
    Chemistry; 2011 Nov; 17(47):13308-17. PubMed ID: 21997929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of imines and secondary amines by Pd-catalyzed coupling of benzyl alcohols and primary amines.
    Kwon MS; Kim S; Park S; Bosco W; Chidrala RK; Park J
    J Org Chem; 2009 Apr; 74(7):2877-9. PubMed ID: 19265414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and "green" catalysis.
    Gunanathan C; Milstein D
    Acc Chem Res; 2011 Aug; 44(8):588-602. PubMed ID: 21739968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst.
    Kumar A; Espinosa-Jalapa NA; Leitus G; Diskin-Posner Y; Avram L; Milstein D
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14992-14996. PubMed ID: 28967992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acylation of Alcohols and Amines with Vinyl Acetates Catalyzed by Cp(2)Sm(thf)(2).
    Ishii Y; Takeno M; Kawasaki Y; Muromachi A; Nishiyama Y; Sakaguchi S
    J Org Chem; 1996 May; 61(9):3088-3092. PubMed ID: 11667171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous Rhodium-Catalyzed Aerobic Oxidative Dehydrogenative Cross-Coupling: Nonsymmetrical Biaryl Amines.
    Matsumoto K; Yoshida M; Shindo M
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5272-6. PubMed ID: 26996772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.