These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35479432)

  • 1. Facile fabrication and low-temperature bonding of Cu@Sn-Bi core-shell particles for conductive pastes.
    Yang Z; Pan Y; Zhao H; Yang X; Liang Y; Zhang Z; Fang B
    RSC Adv; 2021 Jul; 11(42):26408-26414. PubMed ID: 35479432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics.
    Tomotoshi D; Kawasaki H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics.
    Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance.
    Li W; Hu D; Li L; Li CF; Jiu J; Chen C; Ishina T; Sugahara T; Suganuma K
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24711-24721. PubMed ID: 28675295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Sintering of Cu Nanoparticles at Ambient Conditions for Printed Electronics.
    Dai X; Zhang T; Shi H; Zhang Y; Wang T
    ACS Omega; 2020 Jun; 5(22):13416-13423. PubMed ID: 32548529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Cu@Sn TLPS joint for high temperature power electronics application.
    Zhang H; Xu H; Liu X; Xu J
    RSC Adv; 2022 Oct; 12(45):29063-29069. PubMed ID: 36320725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Preparation of Monodisperse Cu@Ag Core-Shell Nanoparticles for Conductive Ink in Printing Electronics.
    Li G; Yu X; Zhang R; Ouyang Q; Sun R; Cao L; Zhu P
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C.
    Li W; Li CF; Lang F; Jiu J; Ueshima M; Wang H; Liu ZQ; Suganuma K
    Nanoscale; 2018 Mar; 10(11):5254-5263. PubMed ID: 29498383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu-Ag Nanocomposite Pastes for Low Temperature Bonding and Flexible Interlayer-Interconnections.
    Lu YC; Liao WH; Wu TJ; Yasuda K; Song JM
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells.
    Kim C; Lee G; Rhee C; Lee M
    Nanoscale; 2015 Apr; 7(15):6627-35. PubMed ID: 25794325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.
    Kim TG; Park HJ; Woo K; Jeong S; Choi Y; Lee SY
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1059-1066. PubMed ID: 29226669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical/thermal behaviors of bimetallic (Ag-Cu, Ag-Sn) nanoparticles for printed electronics.
    Wang X; Huang F; Wang D; Li D; Li P; Muhammad J; Dong X; Zhang Z
    Nanotechnology; 2020 Mar; 31(13):135603. PubMed ID: 31816613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Cu@Ag Micro/Nanoparticle Hybrid Paste and Its Rapid Sintering Technique via Electromagnetic Induction for High-Power Electronics.
    Wu Z; Liu W; Feng J; Wen Z; Zhang X; Wang X; Wang C; Tian Y
    ACS Omega; 2023 Aug; 8(34):31021-31029. PubMed ID: 37663465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu@Ni core-shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films.
    Fang Y; Zeng X; Chen Y; Ji M; Zheng H; Xu W; Peng DL
    Nanotechnology; 2020 Aug; 31(35):355601. PubMed ID: 32554887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Green and Facile Microvia Filling Method via Printing and Sintering of Cu-Ag Core-Shell Nano-Microparticles.
    Yang G; Luo S; Lai T; Lai H; Luo B; Li Z; Zhang Y; Cui C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.