These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35479432)

  • 21. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink.
    Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z
    Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PVP-Mediated Galvanic Replacement Synthesis of Smart Elliptic Cu-Ag Nanoflakes for Electrically Conductive Pastes.
    Zhang Y; Zhu P; Li G; Cui Z; Cui C; Zhang K; Gao J; Chen X; Zhang G; Sun R; Wong C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8382-8390. PubMed ID: 30726050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate.
    Wu X; Shao S; Chen Z; Cui Z
    Nanotechnology; 2017 Jan; 28(3):035203. PubMed ID: 27941231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Novel Printable Electrically Conductive Adhesives (ECAs) with Excellent Conductivity and Stability Enhanced by the Addition of Polyaniline Nanoparticles.
    Wen J; Tian Y; Hang C; Zheng Z; Zhang H; Mei Z; Hu X; Tian Y
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure.
    Park HJ; Jo Y; Cho MK; Young Woo J; Kim D; Lee SY; Choi Y; Jeong S
    Nanoscale; 2018 Mar; 10(11):5047-5053. PubMed ID: 29411848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Fluorinated Polyimide Based Nano Silver Paste with High Thermal Resistance and Outstanding Thixotropic Performance.
    Wang Z; Wang D; Zhang C; Chen W; Meng Q; Yuan H; Yang S
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion.
    Kawamura G; Alvarez S; Stewart IE; Catenacci M; Chen Z; Ha YC
    Sci Rep; 2015 Dec; 5():18333. PubMed ID: 26669447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of complex agent and sintering temperature on conductive copper complex paste.
    Naderi-Samani H; Razavi RS; Mozaffarinia R
    Heliyon; 2022 Dec; 8(12):e12624. PubMed ID: 36619403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conductive One- and Two-Dimensional Structures Fabricated Using Oxidation-Resistant Cu-Sn Particles.
    Liang Y; Hou H; Yang Y; Glicksman H; Ehrman S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34587-34591. PubMed ID: 28948766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Filtration-induced production of conductive/robust Cu films on cellulose paper by low-temperature sintering in air.
    Sakurai S; Akiyama Y; Kawasaki H
    R Soc Open Sci; 2018 Jul; 5(7):172417. PubMed ID: 30109061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metallic core-shell nanoparticles for conductive coatings and printing.
    Pajor-Świerzy A; Szczepanowicz K; Kamyshny A; Magdassi S
    Adv Colloid Interface Sci; 2022 Jan; 299():102578. PubMed ID: 34864597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silver-Copper Alloy Nanoinks for Ambient Temperature Sintering.
    Robinson R; Krause V; Wang S; Yan S; Shang G; Gordon J; Tycko S; Zhong CJ
    Langmuir; 2022 May; 38(18):5633-5644. PubMed ID: 35475615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper-Based Nanomaterials for Fine-Pitch Interconnects in Microelectronics.
    Castillo E; Njuki M; Pasha AF; Dimitrov N
    Acc Chem Res; 2023 Jun; 56(12):1384-1394. PubMed ID: 37289991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures.
    Tomotoshi D; Oogami R; Kawasaki H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Sn doped CuO nanotubes from core-shell Cu/SnO(2) nanowires by the Kirkendall effect.
    Lai M; Mubeen S; Chartuprayoon N; Mulchandani A; Deshusses MA; Myung NV
    Nanotechnology; 2010 Jul; 21(29):295601. PubMed ID: 20585175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.