These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35479529)
1. Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies. Micheal Raj P; Barbe L; Andersson M; De Albuquerque Moreira M; Haase D; Wootton J; Nehzati S; Terry AE; Friel RJ; Tenje M; Sigfridsson Clauss KGV RSC Adv; 2021 Sep; 11(47):29859-29869. PubMed ID: 35479529 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel microfluidic device to study metal geochemistry in situ using X-ray fluorescence microprobe spectroscopy. Chen MA; Kocar BD J Synchrotron Radiat; 2021 Mar; 28(Pt 2):461-471. PubMed ID: 33650558 [TBL] [Abstract][Full Text] [Related]
3. X-ray compatible microfluidics for Brenker J; Henzler K; Borca CN; Huthwelker T; Alan T Lab Chip; 2022 Mar; 22(6):1214-1230. PubMed ID: 35170605 [TBL] [Abstract][Full Text] [Related]
4. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor. Zheng J; Zhang W; Wang F; Yu XY J Phys Condens Matter; 2018 May; 30(18):18LT01. PubMed ID: 29561738 [TBL] [Abstract][Full Text] [Related]
5. Development of a sticker sealed microfluidic device for in situ analytical measurements using synchrotron radiation. Neckel IT; de Castro LF; Callefo F; Teixeira VC; Gobbi AL; Piazzetta MH; de Oliveira RAG; Lima RS; Vicente RA; Galante D; Tolentino HCN Sci Rep; 2021 Dec; 11(1):23671. PubMed ID: 34880305 [TBL] [Abstract][Full Text] [Related]
15. Metal-ligand covalency of iron complexes from high-resolution resonant inelastic X-ray scattering. Lundberg M; Kroll T; DeBeer S; Bergmann U; Wilson SA; Glatzel P; Nordlund D; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2013 Nov; 135(45):17121-34. PubMed ID: 24131028 [TBL] [Abstract][Full Text] [Related]
16. Synchrotron-based spectroscopy of X-ray channeling through hollow capillary microchannels inside glass plates. Mazuritskiy MI J Synchrotron Radiat; 2012 Jan; 19(Pt 1):129-31. PubMed ID: 22186654 [TBL] [Abstract][Full Text] [Related]
17. A new synchrotron rapid-scanning X-ray fluorescence (SRS-XRF) imaging station at SSRL beamline 6-2. Edwards NP; Webb SM; Krest CM; van Campen D; Manning PL; Wogelius RA; Bergmann U J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1565-1573. PubMed ID: 30179198 [TBL] [Abstract][Full Text] [Related]
18. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications. Zhong J; Zhang H; Sun X; Lee ST Adv Mater; 2014 Dec; 26(46):7786-806. PubMed ID: 25204894 [TBL] [Abstract][Full Text] [Related]
19. Large-Scale Integration of All-Glass Valves on a Microfluidic Device. Yalikun Y; Tanaka Y Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404259 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Chun MS; Shim MS; Choi NW Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]