These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35479871)

  • 1. Structural investigation of three distinct amorphous forms of Ar hydrate.
    Brant Carvalho PHB; Moraes PIR; Leitão AA; Andersson O; Tulk CA; Molaison J; Lyubartsev AP; Häussermann U
    RSC Adv; 2021 Sep; 11(49):30744-30754. PubMed ID: 35479871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of the pressure induced amorphization of tetrahydrofuran clathrate hydrate.
    Brant Carvalho PHB; Mace A; Bull CL; Funnell NP; Tulk CA; Andersson O; Häussermann U
    J Chem Phys; 2019 May; 150(20):204506. PubMed ID: 31153163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase diagram of amorphous solid water: low-density, high-density, and very-high-density amorphous ices.
    Giovambattista N; Stanley HE; Sciortino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031510. PubMed ID: 16241447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relation between high-density and very-high-density amorphous ice.
    Loerting T; Salzmann CG; Winkel K; Mayer E
    Phys Chem Chem Phys; 2006 Jun; 8(24):2810-8. PubMed ID: 16775634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of high-density and low-density amorphous ice on biomolecules at cryogenic temperatures: a case study with polyalanine.
    Eltareb A; Lopez GE; Giovambattista N
    Phys Chem Chem Phys; 2021 Sep; 23(35):19402-19414. PubMed ID: 34494044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa.
    Handle PH; Loerting T
    J Chem Phys; 2018 Mar; 148(12):124508. PubMed ID: 29604853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deuteron spin lattice relaxation in amorphous ices.
    Scheuermann M; Geil B; Winkel K; Fujara F
    J Chem Phys; 2006 Jun; 124(22):224503. PubMed ID: 16784294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transitions in pressure-amorphized clathrate hydrates akin to those of amorphous ices.
    Andersson O; Brant Carvalho PHB; Hsu YJ; Häussermann U
    J Chem Phys; 2019 Jul; 151(1):014502. PubMed ID: 31272168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous ice: stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K.
    Loerting T; Schustereder W; Winkel K; Salzmann CG; Kohl I; Mayer E
    Phys Rev Lett; 2006 Jan; 96(2):025702. PubMed ID: 16486598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the structure of amorphous ice: from low-density amorphous through high-density amorphous to very high-density amorphous ice.
    Martonák R; Donadio D; Parrinello M
    J Chem Phys; 2005 Apr; 122(13):134501. PubMed ID: 15847475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure.
    Bai J; Zeng XC
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21240-5. PubMed ID: 23236178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a new dense amorphous ice.
    Finney JL; Bowron DT; Soper AK; Loerting T; Mayer E; Hallbrucker A
    Phys Rev Lett; 2002 Nov; 89(20):205503. PubMed ID: 12443486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural differences between unannealed and expanded high-density amorphous ice based on isotope substitution neutron diffraction.
    Amann-Winkel K; Bowron DT; Loerting T
    Mol Phys; 2019; 117(22):3207-3216. PubMed ID: 32165770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures.
    Handle PH; Loerting T
    J Chem Phys; 2018 Mar; 148(12):124509. PubMed ID: 29604860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structures and hydrogen bond network of high-density and very high-density amorphous ices.
    He C; Lian JS; Jiang Q
    J Phys Chem B; 2005 Oct; 109(42):19893-6. PubMed ID: 16853572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamorphism in tetrahedral substances: Similarities between silicon and ice.
    Garcez KM; Antonelli A
    J Chem Phys; 2015 Jul; 143(3):034501. PubMed ID: 26203030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glass transition in high-density amorphous ice.
    Loerting T; Fuentes-Landete V; Handle PH; Seidl M; Amann-Winkel K; Gainaru C; Böhmer R
    J Non Cryst Solids; 2015 Jan; 407():423-430. PubMed ID: 25641986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of amorphous polymorphism of water.
    Koza MM; Geil B; Winkel K; Köhler C; Czeschka F; Scheuermann M; Schober H; Hansen T
    Phys Rev Lett; 2005 Apr; 94(12):125506. PubMed ID: 15903933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water polyamorphism: reversibility and (dis)continuity.
    Winkel K; Elsaesser MS; Mayer E; Loerting T
    J Chem Phys; 2008 Jan; 128(4):044510. PubMed ID: 18247972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.