These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 35479912)
21. Autothermal reforming of propane over Ni-based hydrotalcite catalysts. Park SY; Kim JH; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2010 May; 10(5):3175-9. PubMed ID: 20358916 [TBL] [Abstract][Full Text] [Related]
22. Influences of Calcination Atmosphere on Nickel Catalyst Supported on Mesoporous Graphitic Carbon Nitride Thin Sheets for CO Methanation. Ahmad KN; Anuar SA; Wan Isahak WNR; Rosli MI; Yarmo MA ACS Appl Mater Interfaces; 2020 Feb; 12(6):7102-7113. PubMed ID: 31968163 [TBL] [Abstract][Full Text] [Related]
23. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects. Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA Chem Asian J; 2024 Aug; 19(16):e202300641. PubMed ID: 37740712 [TBL] [Abstract][Full Text] [Related]
24. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
25. CO Alabi WO Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203 [TBL] [Abstract][Full Text] [Related]
26. Oxygen Vacancy Induced Strong Metal-Support Interactions on Ni/Ce Lin F; Chen Z; Gong H; Wang X; Chen L; Yu H Langmuir; 2023 Mar; 39(12):4495-4506. PubMed ID: 36926903 [TBL] [Abstract][Full Text] [Related]
27. Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming. Ashok J; Das S; Yeo TY; Dewangan N; Kawi S Waste Manag; 2018 Dec; 82():249-257. PubMed ID: 30509587 [TBL] [Abstract][Full Text] [Related]
28. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane. Li L; Chen J; Zhang Y; Sun J; Zou G Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826 [TBL] [Abstract][Full Text] [Related]
29. Effect of Bimetallic Ni-Cr Catalysts for Steam-CO2 Reforming of Methane at High Pressure. Choi BK; Park YH; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2015 Jul; 15(7):5259-63. PubMed ID: 26373119 [TBL] [Abstract][Full Text] [Related]
30. Structural Changes of Ni and Ni-Pt Methane Steam Reforming Catalysts During Activation, Reaction, and Deactivation Under Dynamic Reaction Conditions. Tusini E; Casapu M; Zimina A; Doronkin DE; Störmer H; Barthe L; Belin S; Grunwaldt JD ACS Catal; 2024 May; 14(10):7463-7477. PubMed ID: 38779186 [TBL] [Abstract][Full Text] [Related]
31. Improving the Coke Resistance of Ni-Ceria Catalysts for Partial Oxidation of Methane to Syngas: Experimental and Computational Study. Khurana D; Dahiya N; Negi S; Bordoloi A; Ali Haider M; Bal R; Khan TS Chem Asian J; 2023 Apr; 18(7):e202201298. PubMed ID: 36797847 [TBL] [Abstract][Full Text] [Related]
32. Interfacial Metal-Support Interaction and Catalytic Performance of Perovskite LaCrO Yu H; Wang Y; Tao X; Yu F; Zhao T; Li M; Wang H ACS Appl Mater Interfaces; 2024 Apr; 16(14):17483-17492. PubMed ID: 38556943 [TBL] [Abstract][Full Text] [Related]
33. Lanthanum-Modified MCF-Derived Nickel Phyllosilicate Catalyst for Enhanced CO Zhang T; Liu Q ACS Appl Mater Interfaces; 2020 Apr; 12(17):19587-19600. PubMed ID: 32281371 [TBL] [Abstract][Full Text] [Related]
34. Engineered Catalyst Based on MIL-68(Al) with High Stability for Hydrogenation of Carbon Dioxide and Carbon Monoxide at Low Temperature. Salimi S; F Farnia SM; Akhbari K; Tavasoli A Inorg Chem; 2023 Oct; 62(43):17588-17601. PubMed ID: 37856844 [TBL] [Abstract][Full Text] [Related]
35. Aqueous phase reforming of glycerol over nanosize Cu-Ni catalysts. Kim JY; Kim SH; Moon DJ; Kim JH; Park NC; Kim YC J Nanosci Nanotechnol; 2013 Jan; 13(1):593-7. PubMed ID: 23646780 [TBL] [Abstract][Full Text] [Related]
36. Steam Reforming of Glycerol Over Nano Size Ni-Ce/LaAlO3 Catalysts. Kim SH; Go YJ; Park NC; Kim JH; Kim YC; Moon DJ J Nanosci Nanotechnol; 2015 Jan; 15(1):522-6. PubMed ID: 26328394 [TBL] [Abstract][Full Text] [Related]
37. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability. An K; Zhang Q; Alayoglu S; Musselwhite N; Shin JY; Somorjai GA Nano Lett; 2014 Aug; 14(8):4907-12. PubMed ID: 25078630 [TBL] [Abstract][Full Text] [Related]
39. Effect of Promoters on Steam Reforming of Toluene over a Ni-Based Catalyst Supported on Coal Gangue Ash. Lu M; Xiong Z; Fang K; Li J; Li X; Li T ACS Omega; 2020 Oct; 5(41):26335-26346. PubMed ID: 33110961 [TBL] [Abstract][Full Text] [Related]
40. A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles. Koike M; Li D; Nakagawa Y; Tomishige K ChemSusChem; 2012 Dec; 5(12):2312-4. PubMed ID: 23135797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]