These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35480287)

  • 1. Switching of alternative electrochemical charging mechanism inside single-walled carbon nanotubes: a quartz crystal microbalance study.
    Al-Zubaidi A; Takahashi M; Ishii Y; Kawasaki S
    RSC Adv; 2021 Sep; 11(48):30253-30258. PubMed ID: 35480287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons.
    Tsai WY; Taberna PL; Simon P
    J Am Chem Soc; 2014 Jun; 136(24):8722-8. PubMed ID: 24869895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Reactions of Iodine Molecules Encapsulated in Single-Walled Carbon Nanotubes.
    Kato N; Ishii Y; Yoshida Y; Sakamoto Y; Matsushita K; Takahashi M; Date R; Kawasaki S
    ACS Omega; 2019 Feb; 4(2):2547-2553. PubMed ID: 31459492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of specific adsorption of cations and their size on the charge-compensation mechanism in carbon micropores: the role of anion desorption.
    Levi MD; Sigalov S; Salitra G; Aurbach D; Maier J
    Chemphyschem; 2011 Mar; 12(4):854-62. PubMed ID: 21271632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface.
    Mosch HL; Akintola O; Plass W; Höppener S; Schubert US; Ignaszak A
    Langmuir; 2016 May; 32(18):4440-9. PubMed ID: 27082127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
    Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance.
    Morallón E; Arias-Pardilla J; Calo JM; Cazorla-Amorós D
    Electrochim Acta; 2009 Jun; 54(16):3996-4004. PubMed ID: 20161369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-layer self-assembly of single-walled carbon nanotubes with amine-functionalized weak polyelectrolytes for electrochemically tunable pH sensitivity.
    Lee D; Cui T
    Langmuir; 2011 Apr; 27(7):3348-54. PubMed ID: 21344921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial charge storage mechanisms of composite electrodes based on poly(ortho-phenylenediamine)/carbon nanotubes via advanced electrogravimetry.
    Halim EM; Demir-Cakan R; Perrot H; El Rhazi M; Sel O
    J Chem Phys; 2022 Mar; 156(12):124703. PubMed ID: 35364864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types.
    Escobar-Teran F; Perrot H; Sel O
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-walled carbon nanotubes as a reducing agent for the synthesis of a Prussian blue-based composite: a quartz crystal microbalance study.
    Ishii Y; Al-Zubaidi A; Taniguchi Y; Jindo S; Kawasaki S
    Nanoscale Adv; 2022 Jan; 4(2):510-520. PubMed ID: 36132684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of diameter size of single-walled carbon nanotubes on their high-temperature energy storage behaviour in ionic liquid-based electric double-layer capacitors.
    Al-Zubaidi A; Asai N; Ishii Y; Kawasaki S
    RSC Adv; 2020 Nov; 10(67):41209-41216. PubMed ID: 35519187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Capacitive Charge Storage Mechanism of Nitrogen-Doped Porous Carbons by EQCM and ssNMR.
    Zhang E; Wu YC; Shao H; Klimavicius V; Zhang H; Taberna PL; Grothe J; Buntkowsky G; Xu F; Simon P; Kaskel S
    J Am Chem Soc; 2022 Aug; 144(31):14217-14225. PubMed ID: 35914237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid.
    Ye J; Wu YC; Xu K; Ni K; Shu N; Taberna PL; Zhu Y; Simon P
    J Am Chem Soc; 2019 Oct; 141(42):16559-16563. PubMed ID: 31588740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary Operando Electrochemical Quartz Crystal Microbalance and UV/Vis Spectroscopic Studies: Acetate Effects on Zinc-Manganese Batteries.
    He ZF; Lu YT; Wei TC; Hu CC
    ChemSusChem; 2023 Jun; 16(12):e202300259. PubMed ID: 36869690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Electronic Properties of Transition-Metal Oxides Attached to a Single-Walled CNT as a Lithium-Ion Battery Electrode: A First-Principles Study.
    Tack LW; Azam MA; Seman RN
    J Phys Chem A; 2017 Apr; 121(13):2636-2642. PubMed ID: 28319385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A vapor response mechanism study of surface-modified single-walled carbon nanotubes coated chemiresistors and quartz crystal microbalance sensor arrays.
    Lu HL; Lu CJ; Tian WC; Sheen HJ
    Talanta; 2015 Jan; 131():467-74. PubMed ID: 25281128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique Mechanisms of Ion Storage in Polyaniline Electrodes for Pseudocapacitive Energy Storage Devices Unraveled by EQCM-D Analysis.
    Turgeman M; Bergman G; Nimkar A; Gavriel B; Ballas E; Malchik F; Levi MD; Sharon D; Shpigel N; Aurbach D
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47066-47074. PubMed ID: 36214734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical deposition of poly(trans-[RuCl2(4-vinylpyridine)4]) and its reductive desorption: cyclic voltammetry and electrochemical quartz crystal microbalance studies.
    Bandeira MC; Crayston JA; Franco CV; Glidle A
    Phys Chem Chem Phys; 2007 Feb; 9(8):1003-12. PubMed ID: 17301891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.