These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35480344)

  • 1. Influence of ITO electrode on the electrochromic performance outcomes of viologen-functionalized polyhedral oligomeric silsesquioxanes.
    Pande GK; Sun F; Kim DY; Eom JH; Park JS
    RSC Adv; 2022 Apr; 12(20):12746-12752. PubMed ID: 35480344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Transparent Conducting Oxide Films on WO
    Au BW; Chan KY; Thien GSH; Yeoh ME; Sahdan MZ; Murthy HCA
    Polymers (Basel); 2023 Jan; 15(1):. PubMed ID: 36616586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ITO-Free Solution-Processed Flexible Electrochromic Devices Based on PEDOT:PSS as Transparent Conducting Electrode.
    Singh R; Tharion J; Murugan S; Kumar A
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19427-19435. PubMed ID: 27787980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Temperature Deposition of Transparent Conducting Films Applied to Flexible Electrochromic Devices.
    Li KD; Chen PW; Chang KS
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Complementary Electrochromic Device Based on Iridium Oxide as a Counter Electrode.
    Ko TF; Chen PW; Li KM; Young HT; Chang CT; Hsu SC
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast response of complementary electrochromic device based on WO
    Chen PW; Chang CT; Ko TF; Hsu SC; Li KD; Wu JY
    Sci Rep; 2020 May; 10(1):8430. PubMed ID: 32439890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes.
    Palenzuela J; Viñuales A; Odriozola I; Cabañero G; Grande HJ; Ruiz V
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14562-7. PubMed ID: 25090050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode.
    Sun XW; Wang JX
    Nano Lett; 2008 Jul; 8(7):1884-9. PubMed ID: 18564881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly transparent TiO
    Lv X; Xu X; Zhang Y; Wright DS; Zhang Y; Zhang C
    Nanotechnology; 2020 Aug; 31(35):355201. PubMed ID: 32408277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of Electrochromism and Bipolar Nonvolatile Memory in a Single Viologen.
    Parashar RK; Kandpal S; Pal N; Manna D; Pal BN; Kumar R; Mondal PC
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37883131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avoiding Voltage-Induced Degradation in PET-ITO-Based Flexible Electrochromic Devices.
    Macher S; Rumpel M; Schott M; Posset U; Giffin GA; Löbmann P
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36695-36705. PubMed ID: 32664716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All Polymer Solution Processed Electrochromic Devices: A Future without Indium Tin Oxide?
    De Keersmaecker M; Lang AW; Österholm AM; Reynolds JR
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31568-31579. PubMed ID: 30199228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.
    Laurenti M; Bianco S; Castellino M; Garino N; Virga A; Pirri CF; Mandracci P
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8032-42. PubMed ID: 26977891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Composite Electrochromic Device with Long-Term Bistability Based on a Viologen Derivative and Prussian Blue.
    Wang P; Qian C; Guo X; Jiang C; Liu P
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2522-2529. PubMed ID: 38166192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Functional Electrochromic Smart Window Using WO
    Dutta P; Verma M; Paliwal MS; Mondal I; Ganesha MK; Gupta R; Singh AK; Kulkarni GU
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Transparent Multidimensional Electrode with Indium Tin Oxide Nanofibers and Gold Nanoparticles for Bistable Electrochromic Devices.
    Yang G; Yang B; Mu W; Ge Y; Cai Y; Yao Z; Ma Z; Zhang YM; Zhang SX
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27453-27460. PubMed ID: 32436379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-Low Power Electrochromic Heat Shutters Through Tailoring Diffusion-Controlled Behaviors.
    In YR; Kim YM; Lee Y; Choi WY; Kim SH; Lee SW; Moon HC
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30635-30642. PubMed ID: 32519836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Transparent Conductive Reduced Graphene Oxide/Silver Nanowires/Silver Grid Electrodes for Low-Voltage Electrochromic Smart Windows.
    Mallikarjuna K; Kim H
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1969-1978. PubMed ID: 30571910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids.
    Lu HC; Kao SY; Yu HF; Chang TH; Kung CW; Ho KC
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30351-30361. PubMed ID: 27726326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications.
    Li KD; Chen PW; Chang KS; Hsu SC; Jan DJ
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30413100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.