These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 35480344)
21. Wetting-Induced Fabrication of Graphene Hybrid with Conducting Polymers for High-Performance Flexible Transparent Electrodes. Ma C; Liu H; Teng C; Li L; Zhu Y; Yang H; Jiang L ACS Appl Mater Interfaces; 2020 Dec; 12(49):55372-55381. PubMed ID: 33236880 [TBL] [Abstract][Full Text] [Related]
22. Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes. Vasilyeva SV; Unur E; Walczak RM; Donoghue EP; Rinzler AG; Reynolds JR ACS Appl Mater Interfaces; 2009 Oct; 1(10):2288-97. PubMed ID: 20355864 [TBL] [Abstract][Full Text] [Related]
23. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films. Liu X; Zhou A; Dou Y; Pan T; Shao M; Han J; Wei M Nanoscale; 2015 Oct; 7(40):17088-95. PubMed ID: 26420230 [TBL] [Abstract][Full Text] [Related]
24. Realisation of Solid-State Electrochromic Devices Based on Gel Electrolyte. Au BW; Chan KY; Sahdan MZ; Chong AS; Knipp D F1000Res; 2022; 11():380. PubMed ID: 35706997 [No Abstract] [Full Text] [Related]
25. Dual-Band Electrochromic Devices with a Transparent Conductive Capacitive Charge-Balancing Anode. Zhang S; Li Y; Zhang T; Cao S; Yao Q; Lin H; Ye H; Fisher A; Lee JY ACS Appl Mater Interfaces; 2019 Dec; 11(51):48062-48070. PubMed ID: 31790202 [TBL] [Abstract][Full Text] [Related]
26. Intercalation-free, fast switching of mesoporous antimony doped tin oxide with cathodically coloring electrochromic dyes. Klein J; Hein A; Bold E; Alarslan F; Oesterschulze E; Haase M Nanoscale Adv; 2022 May; 4(9):2144-2152. PubMed ID: 36133444 [TBL] [Abstract][Full Text] [Related]
27. All solid state electrochromic devices based on the LiF electrolyte. Chen X; Dou S; Li W; Liu D; Zhang Y; Zhao Y; Li Y; Zhao J; Zhang X Chem Commun (Camb); 2020 May; 56(37):5018-5021. PubMed ID: 32242572 [TBL] [Abstract][Full Text] [Related]
28. Applied IrO Ko TF; Chen PW; Li KM; Young HT Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897609 [TBL] [Abstract][Full Text] [Related]
29. Bifunctional MoO Dong W; Lv Y; Xiao L; Fan Y; Zhang N; Liu X ACS Appl Mater Interfaces; 2016 Dec; 8(49):33842-33847. PubMed ID: 27960371 [TBL] [Abstract][Full Text] [Related]
30. Applications of Copolymers Consisting of 2,6-di(9H-carbazol-9-yl)pyridine and 3,6-di(2-thienyl)carbazole Units as Electrodes in Electrochromic Devices. Kuo CW; Chang JC; Huang YT; Chang JK; Lee LT; Wu TY Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995740 [TBL] [Abstract][Full Text] [Related]
31. Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Shah KW; Wang SX; Soo DXY; Xu J Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717323 [TBL] [Abstract][Full Text] [Related]
32. Graphene Electrode Enabling Electrochromic Approaches for Daylight-Dimming Applications. Kim JY; Cho NS; Cho S; Kim K; Cheon S; Kim K; Kang SY; Cho SM; Lee JI; Oh JY; Kim YH; Ryu H; Hwang CS; Kim S; Ah CS; Kim TY Sci Rep; 2018 Mar; 8(1):3944. PubMed ID: 29500432 [TBL] [Abstract][Full Text] [Related]
34. Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids. Gélinas B; Das D; Rochefort D ACS Appl Mater Interfaces; 2017 Aug; 9(34):28726-28736. PubMed ID: 28731317 [TBL] [Abstract][Full Text] [Related]
35. Long-Term Stable Complementary Electrochromic Device Based on WO Ke Y; Wang Z; Xie H; Khalifa MA; Zheng J; Xu C Membranes (Basel); 2023 Jun; 13(6):. PubMed ID: 37367805 [TBL] [Abstract][Full Text] [Related]
36. 1,4-Bis((9H-Carbazol-9-yl)Methyl)Benzene-Containing Electrochromic Polymers as Potential Electrodes for High-Contrast Electrochromic Devices. Kuo CW; Chang JC; Lee LT; Lin YD; Lee PY; Wu TY Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335506 [TBL] [Abstract][Full Text] [Related]
37. Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation. Kao SY; Lu HC; Kung CW; Chen HW; Chang TH; Ho KC ACS Appl Mater Interfaces; 2016 Feb; 8(6):4175-84. PubMed ID: 26807824 [TBL] [Abstract][Full Text] [Related]
38. Viologen-Immobilized 2D Polymer Film Enabling Highly Efficient Electrochromic Device for Solar-Powered Smart Window. Wang Z; Jia X; Zhang P; Liu Y; Qi H; Zhang P; Kaiser U; Reineke S; Dong R; Feng X Adv Mater; 2022 Jan; 34(1):e2106073. PubMed ID: 34613639 [TBL] [Abstract][Full Text] [Related]
39. Potential Gradient-Driven Dual-Functional Electrochromic and Electrochemical Device Based on a Shared Electrode Design. Xu G; Zhang W; Zhu G; Xia H; Zhang H; Xie Q; Jin P; Zhang H; Yi C; Zhang R; Ji L; Shui T; Moloto N; She W; Sun Z Adv Sci (Weinh); 2024 Jul; 11(28):e2401948. PubMed ID: 38769650 [TBL] [Abstract][Full Text] [Related]
40. Layer-by-Layer Assembled Oxide Nanoparticle Electrodes with High Transparency, Electrical Conductivity, and Electrochemical Activity by Reducing Organic Linker-Induced Oxygen Vacancies. Cho I; Song Y; Cheong S; Kim Y; Cho J Small; 2020 Feb; 16(8):e1906768. PubMed ID: 31967718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]