These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35480448)

  • 1. Cyclic oxygen exchange capacity of Ce-doped V
    Riaz A; Lipiński W; Lowe A
    RSC Adv; 2021 Jun; 11(37):23095-23104. PubMed ID: 35480448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration-Dependent Solar Thermochemical CO
    Riaz A; Ali MU; Enge TG; Tsuzuki T; Lowe A; Lipiński W
    Research (Wash D C); 2020; 2020():3049534. PubMed ID: 32043084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Oxygen Carrier Materials and Related Thermochemical Redox Processes for Concentrating Solar Thermal Applications.
    Abanades S
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production.
    Le Gal A; Julbe A; Abanades S
    Molecules; 2023 May; 28(11):. PubMed ID: 37298803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of specific surface area on syngas production performance of pure ceria in high-temperature thermochemical redox cycling coupled to methane partial oxidation.
    Heya M; Gao X; Tricoli A; Lipiński W
    RSC Adv; 2020 Oct; 10(60):36617-36626. PubMed ID: 35517936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solar tower fuel plant for the thermochemical production of kerosene from H
    Zoller S; Koepf E; Nizamian D; Stephan M; Patané A; Haueter P; Romero M; González-Aguilar J; Lieftink D; de Wit E; Brendelberger S; Sizmann A; Steinfeld A
    Joule; 2022 Jul; 6(7):1606-1616. PubMed ID: 35915707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perovskite nanocomposites as effective CO
    Zhang J; Haribal V; Li F
    Sci Adv; 2017 Aug; 3(8):e1701184. PubMed ID: 28875171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cation-Deficient Ce-Substituted Perovskite Oxides with Dual-Redox Active Sites for Thermochemical Applications.
    Naik JM; Bulfin B; Triana CA; Stoian DC; Patzke GR
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):806-817. PubMed ID: 36542810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic enhancement of production of solar thermochemical fuels: opportunities and limitations.
    Coronado JM; Bayón A
    Phys Chem Chem Phys; 2023 Jul; 25(26):17092-17106. PubMed ID: 37340776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.
    Imtiaz Q; Kurlov A; Rupp JL; Müller CR
    ChemSusChem; 2015 Jun; 8(12):2055-65. PubMed ID: 25916240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar thermochemical splitting of water to generate hydrogen.
    Rao CNR; Dey S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13385-13393. PubMed ID: 28522461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor.
    Michalsky R; Neuhaus D; Steinfeld A
    Energy Technol (Weinh); 2015 Jul; 3(7):784-789. PubMed ID: 31218206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen Exchange in Dual-Phase La
    Bork AH; Carrillo AJ; Hood ZD; Yildiz B; Rupp JLM
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32622-32632. PubMed ID: 32551512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscaled Oxygen Carrier-Driven Chemical Looping for Carbon Neutrality: Opportunities and Challenges.
    Sunny AA; Meng Q; Kumar S; Joshi R; Fan LS
    Acc Chem Res; 2023 Dec; 56(23):3404-3416. PubMed ID: 37956385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.
    Gibbons WT; Venstrom LJ; De Smith RM; Davidson JH; Jackson GS
    Phys Chem Chem Phys; 2014 Jul; 16(27):14271-80. PubMed ID: 24914875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K-doped CeO
    Portarapillo M; Russo D; Landi G; Luciani G; Di Benedetto A
    RSC Adv; 2021 Dec; 11(62):39420-39427. PubMed ID: 35492484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox behavior of potassium doped and transition metal co-doped Ce
    Portarapillo M; Landi G; Luciani G; Imparato C; Vitiello G; Deorsola FA; Aronne A; Di Benedetto A
    RSC Adv; 2022 May; 12(23):14645-14654. PubMed ID: 35702191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-Doped BaMnO
    Haribal VP; He F; Mishra A; Li F
    ChemSusChem; 2017 Sep; 10(17):3402-3408. PubMed ID: 28782914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syngas Production From the Reforming of Typical Biogas Compositions in an Inert Porous Media Reactor.
    Guerrero F; Espinoza L; Ripoll N; Lisbona P; Arauzo I; Toledo M
    Front Chem; 2020; 8():145. PubMed ID: 32232024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers.
    Huang HB; Aisyah L; Ashman PJ; Leung YC; Kwong CW
    Bioresour Technol; 2013 Jul; 140():385-91. PubMed ID: 23711944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.