BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35480472)

  • 1. Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography.
    Mettry M; Worthington MA; Au B; Forien JB; Chandrasekaran S; Heth NA; Schwartz JJ; Liang S; Smith W; Biener J; Saha SK; Oakdale JS
    RSC Adv; 2021 Jun; 11(37):22633-22639. PubMed ID: 35480472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography.
    Saha SK; Oakdale JS; Cuadra JA; Divin C; Ye J; Forien JB; Bayu Aji LB; Biener J; Smith WL
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1164-1172. PubMed ID: 29171264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Nanofabrication of SiOC Ceramic Structures.
    Brigo L; Schmidt JEM; Gandin A; Michieli N; Colombo P; Brusatin G
    Adv Sci (Weinh); 2018 Dec; 5(12):1800937. PubMed ID: 30581702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct laser writing of volumetric gradient index lenses and waveguides.
    Ocier CR; Richards CA; Bacon-Brown DA; Ding Q; Kumar R; Garcia TJ; van de Groep J; Song JH; Cyphersmith AJ; Rhode A; Perry AN; Littlefield AJ; Zhu J; Xie D; Gao H; Messinger JF; Brongersma ML; Toussaint KC; Goddard LL; Braun PV
    Light Sci Appl; 2020 Dec; 9(1):196. PubMed ID: 33298832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct laser writing-enabled 3D printing strategies for microfluidic applications.
    Young OM; Xu X; Sarker S; Sochol RD
    Lab Chip; 2024 Apr; 24(9):2371-2396. PubMed ID: 38576361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discover Patent Landscape of Two-photon Polymerization Technology for the Production of 3D Nano-structure Using Claim-based Approach.
    Jui CW; Trappey AJC; Fu CC
    Recent Pat Nanotechnol; 2018; 12(3):218-230. PubMed ID: 30117404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Dots Facilitate 3D Two-Photon Laser Lithography.
    Yu Y; Prudnikau A; Lesnyak V; Kirchner R
    Adv Mater; 2023 Jul; 35(29):e2211702. PubMed ID: 37042293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Resolution 3D Fabrication of Glass Fiber-Reinforced Polymer Nanocomposite (FRPN) Objects by Two-Photon Direct Laser Writing.
    Ritacco T; Di Cianni W; Perziano D; Magarò P; Convertino A; Maletta C; De Luca A; Sanz de León A; Giocondo M
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17754-17762. PubMed ID: 35394738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope.
    Pearre BW; Michas C; Tsang JM; Gardner TJ; Otchy TM
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 32864346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies.
    O'Halloran S; Pandit A; Heise A; Kellett A
    Adv Sci (Weinh); 2023 Mar; 10(7):e2204072. PubMed ID: 36585380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to fabricate disconnected silver nanostructures in 3D.
    Vora K; Kang S; Mazur E
    J Vis Exp; 2012 Nov; (69):e4399. PubMed ID: 23222551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures.
    Kotz F; Quick AS; Risch P; Martin T; Hoose T; Thiel M; Helmer D; Rapp BE
    Adv Mater; 2021 Mar; 33(9):e2006341. PubMed ID: 33448090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers.
    Dottermusch S; Busko D; Langenhorst M; Paetzold UW; Richards BS
    Opt Lett; 2019 Jan; 44(1):29-32. PubMed ID: 30645537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Two-Photon 3D Printing Enabled by Holographic Multi-Foci High-Speed Scanning.
    Zhang L; Wang C; Zhang C; Xue Y; Ye Z; Xu L; Hu Y; Li J; Chu J; Wu D
    Nano Lett; 2024 Feb; 24(8):2671-2679. PubMed ID: 38375804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization.
    Popescu RC; Calin BS; Tanasa E; Vasile E; Mihailescu M; Paun IA
    Front Bioeng Biotechnol; 2023; 11():1273277. PubMed ID: 38170069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile direct laser writing of non-photosensitive materials using multi-photon reduction-based assembly of nanoparticles.
    Nishiyama H; Umetsu K; Kimura K
    Sci Rep; 2019 Oct; 9(1):14310. PubMed ID: 31586091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications.
    Ho CMB; Mishra A; Hu K; An J; Kim YJ; Yoon YJ
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2198-2214. PubMed ID: 33445279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structuring light using solgel hybrid 3D-printed optics prepared by two-photon polymerization.
    Lightman S; Bin-Nun M; Bar G; Hurvitz G; Gvishi R
    Appl Opt; 2022 Feb; 61(6):1434-1439. PubMed ID: 35201027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinitiator Free Resins Composed of Plant-Derived Monomers for the Optical µ-3D Printing of Thermosets.
    Lebedevaite M; Ostrauskaite J; Skliutas E; Malinauskas M
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size.
    Gan Z; Cao Y; Evans RA; Gu M
    Nat Commun; 2013; 4():2061. PubMed ID: 23784312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.