These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35480472)

  • 21. An open source three-mirror laser scanning holographic two-photon lithography system.
    Pisanello M; Zheng D; Balena A; Pisano F; De Vittorio M; Pisanello F
    PLoS One; 2022; 17(4):e0265678. PubMed ID: 35427396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-ray Application.
    Egorov AE; Kostyukov AA; Shcherbakov DA; Kolymagin DA; Chubich DA; Matital RP; Arsenyev MV; Burtsev ID; Mestergazi MG; Zhiganshina ER; Chesnokov SA; Vitukhnovsky AG; Kuzmin VA
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. λ/20 axial control in 2.5D polymerized structures fabricated with DLW lithography.
    de Miguel G; Duocastella M; Vicidomini G; Diaspro A
    Opt Express; 2015 Sep; 23(19):24850-8. PubMed ID: 26406685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-Photon Polymerized Shape Memory Microfibers: A New Mechanical Characterization Method in Liquid.
    Minnick G; Tajvidi Safa B; Rosenbohm J; Lavrik NV; Brooks J; Esfahani AM; Samaniego A; Meng F; Richter B; Gao W; Yang R
    Adv Funct Mater; 2023 Jan; 33(3):. PubMed ID: 36817407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated brightfield layerwise evaluation in three-dimensional micropatterning via two-photon polymerization.
    Sun J; Howes AM; Jia S; Burrow JA; Felzenszwalb PF; Dawson MR; Shao C; Toussaint KC
    Opt Express; 2024 Mar; 32(7):12508-12519. PubMed ID: 38571071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization.
    Geng Q; Wang D; Chen P; Chen SC
    Nat Commun; 2019 May; 10(1):2179. PubMed ID: 31097713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A facile multi-material direct laser writing strategy.
    Lamont AC; Restaino MA; Kim MJ; Sochol RD
    Lab Chip; 2019 Jul; 19(14):2340-2345. PubMed ID: 31209452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printed vascular phantoms for high-resolution biophotonic image quality assessment via direct laser writing.
    Horng H; O'Brien K; Lamont A; Sochol RD; Pfefer TJ; Chen Y
    Opt Lett; 2021 Apr; 46(8):1987-1990. PubMed ID: 33857123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications.
    Maibohm C; Silvestre OF; Borme J; Sinou M; Heggarty K; Nieder JB
    Sci Rep; 2020 May; 10(1):8740. PubMed ID: 32457310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pursuit of hidden rules behind the irregularity of nano capillary lithography by hybrid intelligence.
    Cho IH; Ji MG; Kim J
    Sci Rep; 2023 Aug; 13(1):13649. PubMed ID: 37608050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarized second-harmonic generation optical microscopy for laser-directed assembly of ZnO nanowires.
    Wang R; Wang F; Long J; Tao Y; Zhou L; Fu H; Liu Y; Jiao B; Deng L; Xiong W
    Opt Lett; 2019 Sep; 44(17):4291-4294. PubMed ID: 31465385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Refractive Index Photopolymers by Thiol-Yne "Click" Polymerization.
    Mavila S; Sinha J; Hu Y; Podgórski M; Shah PK; Bowman CN
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15647-15658. PubMed ID: 33780226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice.
    Hong Y; Zhao D; Liu D; Ma B; Yao G; Li Q; Han A; Qiu M
    Nano Lett; 2018 Aug; 18(8):5036-5041. PubMed ID: 29940114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printing and In Situ Surface Modification via Type I Photoinitiated Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Corrigan N; Boyer C
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Submicron Patterns-on-a-Chip: Fabrication of a Microfluidic Device Incorporating 3D Printed Surface Ornaments.
    Nouri-Goushki M; Sharma A; Sasso L; Zhang S; Van der Eerden BCJ; Staufer U; Fratila-Apachitei LE; Zadpoor AA
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6127-6136. PubMed ID: 33405666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent-Free Nanofabrication Based on Ice-Assisted Electron-Beam Lithography.
    Hong Y; Zhao D; Wang J; Lu J; Yao G; Liu D; Luo H; Li Q; Qiu M
    Nano Lett; 2020 Dec; 20(12):8841-8846. PubMed ID: 33185450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.
    Käpylä E; Sedlačík T; Aydogan DB; Viitanen J; Rypáček F; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():280-9. PubMed ID: 25175215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible-Light-Degradable 3D Microstructures in Aqueous Environments.
    Gernhardt M; Truong VX; Barner-Kowollik C
    Adv Mater; 2022 Sep; 34(39):e2203474. PubMed ID: 35918791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport-of-intensity-based phase imaging to quantify the refractive index response of 3D direct-write lithography.
    Glugla DJ; Chosy MB; Alim MD; Sullivan AC; McLeod RR
    Opt Express; 2018 Jan; 26(2):1851-1869. PubMed ID: 29401908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.
    Xing JF; Zheng ML; Duan XM
    Chem Soc Rev; 2015 Aug; 44(15):5031-9. PubMed ID: 25992492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.