These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35480693)

  • 1. A sustainable approach to cathode delamination using a green solvent.
    Buken O; Mancini K; Sarkar A
    RSC Adv; 2021 Aug; 11(44):27356-27368. PubMed ID: 35480693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal.
    Wang M; Liu K; Yu J; Zhang Q; Zhang Y; Valix M; Tsang DCW
    Glob Chall; 2023 Mar; 7(3):2200237. PubMed ID: 36910467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery and Reuse of Composite Cathode Binder in Lithium Ion Batteries.
    Sarkar A; May R; Ramesh S; Chang W; Marbella LE
    ChemistryOpen; 2021 May; 10(5):545-552. PubMed ID: 33945235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries.
    Wang M; Tan Q; Liu L; Li J
    J Hazard Mater; 2019 Dec; 380():120846. PubMed ID: 31279946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource Recovery of Spent Lithium-Ion Battery Cathode Materials by a Supercritical Carbon Dioxide System.
    Fu Y; Dong X; Ebin B
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectively peeling of spent LiFePO
    He K; Zhang ZY; Zhang FS
    J Hazard Mater; 2020 Mar; 386():121633. PubMed ID: 31740301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of LiFePO
    Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S
    Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries.
    Hu Z; Zhu N; Wei X; Zhang S; Li F; Wu P; Chen Y
    J Environ Manage; 2021 Nov; 298():113500. PubMed ID: 34388548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White Latex: Appealing "Green" Alternative for PVdF in Electrode Manufacturing for Sustainable Li-Ion Batteries.
    Lahiru Sandaruwan RD; Kuramoto R; Wang B; Ma S; Wang H
    Langmuir; 2022 Jul; 38(29):8934-8942. PubMed ID: 35838145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An environment-friendly crosslinked binder endowing LiFePO
    Zhao L; Sun Z; Zhang H; Li Y; Mo Y; Yu F; Chen Y
    RSC Adv; 2020 Aug; 10(49):29362-29372. PubMed ID: 35521137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Recovery of Cathode Materials from Spent Lithium-Ion Battery Material with a Near-Room-Temperature Separation.
    Wang T; Tao T; Lv W; Zhao Y; Kang F; Cao H; Sun Z
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10267-10276. PubMed ID: 38363101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of experimental Al-ion batteries for energy storage applications.
    Mączka M; Guzik M; Mosiałek M; Wojnarowska M; Pasierb P; Nitkiewicz T
    Sci Total Environ; 2024 Feb; 912():169258. PubMed ID: 38101635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of PVDF in Rheology and Microstructure of NCM Cathode Slurries for Lithium-Ion Battery.
    Sung SH; Kim S; Park JH; Park JD; Ahn KH
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding.
    Wang H; Liu J; Bai X; Wang S; Yang D; Fu Y; He Y
    Waste Manag; 2019 May; 91():89-98. PubMed ID: 31203946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries.
    Tsao CH; Yang TK; Chen KY; Fang CE; Ueda M; Richter FH; Janek J; Chiu CC; Kuo PL
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9846-9855. PubMed ID: 33594888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium Alginate Binders for Bivalency Aqueous Batteries.
    Ding Y; Zhong X; Yuan C; Duan L; Zhang L; Wang Z; Wang C; Shi F
    ACS Appl Mater Interfaces; 2021 May; 13(17):20681-20688. PubMed ID: 33886277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyvinylidene fluoride effects on the electrocatalytic properties of air cathodes in microbial fuel cells.
    Wang G; Duan X; Wang D; Dong X; Zhang X
    Bioelectrochemistry; 2018 Apr; 120():138-144. PubMed ID: 29253736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.