These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35480693)
21. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries. Natarajan S; Boricha AB; Bajaj HC Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480 [TBL] [Abstract][Full Text] [Related]
23. Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis. Yu S; Xiong J; Wu D; Lü X; Yao Z; Xu S; Tang J Environ Sci Pollut Res Int; 2020 Nov; 27(32):40205-40209. PubMed ID: 32661975 [TBL] [Abstract][Full Text] [Related]
24. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. Prasanna K; Subburaj T; Jo YN; Lee WJ; Lee CW ACS Appl Mater Interfaces; 2015 Apr; 7(15):7884-90. PubMed ID: 25822540 [TBL] [Abstract][Full Text] [Related]
25. Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation. Tokoro C; Lim S; Teruya K; Kondo M; Mochidzuki K; Namihira T; Kikuchi Y Waste Manag; 2021 Apr; 125():58-66. PubMed ID: 33684665 [TBL] [Abstract][Full Text] [Related]
26. Fabrication of Na-Ion Full-Cells using Carbon-Coated Na Subramanyan K; Akshay M; Lee YS; Aravindan V Small Methods; 2022 Jun; 6(6):e2200257. PubMed ID: 35466582 [TBL] [Abstract][Full Text] [Related]
28. Effects of incineration and pyrolysis on removal of organics and liberation of cathode active materials derived from spent ternary lithium-ion batteries. Liu P; Mi X; Zhao H; Cai L; Luo F; Liu C; Wang Z; Deng C; He J; Zeng G; Luo X Waste Manag; 2023 Sep; 169():342-350. PubMed ID: 37517305 [TBL] [Abstract][Full Text] [Related]
29. Lithium Borate Containing Bifunctional Binder To Address Both Ion Transporting and Polysulfide Trapping for High-Performance Li-S Batteries. Zhong L; Mo Y; Deng K; Wang S; Han D; Ren S; Xiao M; Meng Y ACS Appl Mater Interfaces; 2019 Aug; 11(32):28968-28977. PubMed ID: 31334632 [TBL] [Abstract][Full Text] [Related]
30. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System. Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z iScience; 2020 May; 23(5):101081. PubMed ID: 32380421 [TBL] [Abstract][Full Text] [Related]
31. Crystallization behavior of polyvinylidene fluoride (PVDF) in NMP/DMF solvents: a molecular dynamics study. Park A; Jung JY; Kim S; Kim W; Seo MY; Kim S; Kim Y; Lee WB RSC Adv; 2023 Apr; 13(19):12917-12924. PubMed ID: 37114016 [TBL] [Abstract][Full Text] [Related]
32. Revealing the Role of Poly(vinylidene fluoride) Binder in Si/Graphite Composite Anode for Li-Ion Batteries. Zhao X; Niketic S; Yim CH; Zhou J; Wang J; Abu-Lebdeh Y ACS Omega; 2018 Sep; 3(9):11684-11690. PubMed ID: 31459264 [TBL] [Abstract][Full Text] [Related]
33. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778 [TBL] [Abstract][Full Text] [Related]
34. Preparation and performance study of a PVDF-LATP ceramic composite polymer electrolyte membrane for solid-state batteries. Liang X; Han D; Wang Y; Lan L; Mao J RSC Adv; 2018 Dec; 8(71):40498-40504. PubMed ID: 35557886 [TBL] [Abstract][Full Text] [Related]
35. Incineration of EV Lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds. Lombardo G; Ebin B; St J Foreman MR; Steenari BM; Petranikova M J Hazard Mater; 2020 Jul; 393():122372. PubMed ID: 32208329 [TBL] [Abstract][Full Text] [Related]
36. Study on the thermal reduction effect of organic components in spent ternary lithium battery cathode active materials. Jiang H; Li Z; Xie W; Zhang G; Yu Z; Lu Q; He Y Waste Manag; 2022 Jul; 148():33-42. PubMed ID: 35660255 [TBL] [Abstract][Full Text] [Related]
37. Characterization of a Cross-Linked Polymer Containing Hydroxyl Groups as a Binder for High-Capacity Anodes in Li-Ion Batteries. Jang SY; Han SH J Nanosci Nanotechnol; 2019 Oct; 19(10):6617-6624. PubMed ID: 31027000 [TBL] [Abstract][Full Text] [Related]
38. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Zhang T; Li JT; Liu J; Deng YP; Wu ZG; Yin ZW; Guo D; Huang L; Sun SG Chem Commun (Camb); 2016 Mar; 52(25):4683-6. PubMed ID: 26954264 [TBL] [Abstract][Full Text] [Related]
39. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Ryu M; Hong YK; Lee SY; Park JH Nat Commun; 2023 Mar; 14(1):1316. PubMed ID: 36899006 [TBL] [Abstract][Full Text] [Related]
40. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries. He K; Zhang ZY; Alai L; Zhang FS J Hazard Mater; 2019 Aug; 375():43-51. PubMed ID: 31039463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]