These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35480735)
1. Freestanding symmetrical SiN/Si/SiN composite coated on carbon nanotube paper for a high-performance lithium-ion battery anode based on synergistic effects. He X; Yue F; Shang Z; Wang J; Gu W; Huang X RSC Adv; 2021 Aug; 11(45):28107-28115. PubMed ID: 35480735 [TBL] [Abstract][Full Text] [Related]
2. Enhanced stability and kinetic performance of sandwich Si anode constructed by carbon nanotube and silicon carbide for lithium-ion battery. Di F; Gu X; Chu Y; Li L; Geng X; Sun C; Zhou W; Zhang H; Zhao H; Tao L; Jiang G; Zhang X; An B J Colloid Interface Sci; 2024 Sep; 670():204-214. PubMed ID: 38761573 [TBL] [Abstract][Full Text] [Related]
3. Ultrathin Si/CNTs Paper-Like Composite for Flexible Li-Ion Battery Anode With High Volumetric Capacity. Fu J; Liu H; Liao L; Fan P; Wang Z; Wu Y; Zhang Z; Hai Y; Lv G; Mei L; Hao H; Xing J; Dong J Front Chem; 2018; 6():624. PubMed ID: 30619831 [TBL] [Abstract][Full Text] [Related]
4. A facile in situ synthesis of SiC&Si@CNT composite 3D frameworks as an anode material for lithium-ion batteries. Su W; Liang Y; Zuo Y; Tang Y Dalton Trans; 2019 Sep; 48(34):12964-12973. PubMed ID: 31397472 [TBL] [Abstract][Full Text] [Related]
5. A core-shell structure of polydopamine-coated phosphorus-carbon nanotube composite for high-performance sodium-ion batteries. Liu W; Yuan X; Yu X Nanoscale; 2018 Sep; 10(35):16675-16682. PubMed ID: 30155543 [TBL] [Abstract][Full Text] [Related]
6. A Nanostructured Si/SiOC Composite Anode with Volume-Change-Buffering Microstructure for Lithium-Ion Batteries. Wu Z; Lv W; Cheng X; Gao J; Qian Z; Tian D; Li J; He W; Yang C Chemistry; 2019 Feb; 25(10):2604-2609. PubMed ID: 30537126 [TBL] [Abstract][Full Text] [Related]
7. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries. Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical fabrication and evaluation of a self-standing carbon nanotube/carbon fiber composite electrode for lithium-ion batteries. Liu YH; Lin HH; Tsai TY; Hsu CH RSC Adv; 2019 Oct; 9(57):33117-33123. PubMed ID: 35529149 [TBL] [Abstract][Full Text] [Related]
9. Rational Design of Hierarchical Carbon/Mesoporous Silicon Composite Sponges as High-Performance Flexible Energy Storage Electrodes. Yang Y; Yang X; Chen S; Zou M; Li Z; Cao A; Yuan Q ACS Appl Mater Interfaces; 2017 Jul; 9(27):22819-22825. PubMed ID: 28665580 [TBL] [Abstract][Full Text] [Related]
10. Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode. Bhandavat R; Singh G ACS Appl Mater Interfaces; 2012 Oct; 4(10):5092-7. PubMed ID: 23030550 [TBL] [Abstract][Full Text] [Related]
11. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Shim HC; Kim I; Woo CS; Lee HJ; Hyun S Nanoscale; 2017 Apr; 9(14):4713-4720. PubMed ID: 28327775 [TBL] [Abstract][Full Text] [Related]
12. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. Liu J; Li N; Goodman MD; Zhang HG; Epstein ES; Huang B; Pan Z; Kim J; Choi JH; Huang X; Liu J; Hsia KJ; Dillon SJ; Braun PV ACS Nano; 2015 Feb; 9(2):1985-94. PubMed ID: 25639798 [TBL] [Abstract][Full Text] [Related]
13. Perforated Metal Oxide-Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties. Choi SH; Lee JH; Kang YC ACS Nano; 2015 Oct; 9(10):10173-85. PubMed ID: 26355350 [TBL] [Abstract][Full Text] [Related]
14. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. Cui LF; Hu L; Choi JW; Cui Y ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567 [TBL] [Abstract][Full Text] [Related]
15. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries. Xu T; Wang D; Qiu P; Zhang J; Wang Q; Xia B; Xie X Nanoscale; 2018 Sep; 10(35):16638-16644. PubMed ID: 30155540 [TBL] [Abstract][Full Text] [Related]
16. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery. Li X; Xing Y; Xu J; Deng Q; Shao LH Chem Commun (Camb); 2020 Jan; 56(3):364-367. PubMed ID: 31802084 [TBL] [Abstract][Full Text] [Related]
17. Si@C Microsphere Composite with Multiple Buffer Structures for High-Performance Lithium-Ion Battery Anodes. Li Y; Liu W; Long Z; Xu P; Sun Y; Zhang X; Ma S; Jiang N Chemistry; 2018 Sep; 24(49):12912-12919. PubMed ID: 29802660 [TBL] [Abstract][Full Text] [Related]
18. Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery. Lee S; Kwon S; Kim K; Kang H; Ko JM; Choi W Molecules; 2021 Nov; 26(22):. PubMed ID: 34834041 [TBL] [Abstract][Full Text] [Related]
19. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications. Biserni E; Scarpellini A; Bassi AL; Bruno P; Zhou Y; Xie M Nanotechnology; 2016 Jun; 27(24):245401. PubMed ID: 27172170 [TBL] [Abstract][Full Text] [Related]
20. Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes. An W; He P; Che Z; Xiao C; Guo E; Pang C; He X; Ren J; Yuan G; Du N; Yang D; Peng DL; Zhang Q ACS Appl Mater Interfaces; 2022 Mar; 14(8):10308-10318. PubMed ID: 35175030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]