These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35480785)

  • 21. Human Skin-Inspired Electrospun Patterned Robust Strain-Insensitive Pressure Sensors and Wearable Flexible Light-Emitting Diodes.
    Veeramuthu L; Cho CJ; Liang FC; Venkatesan M; Kumar G R; Hsu HY; Chung RJ; Lee CH; Lee WY; Kuo CC
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30160-30173. PubMed ID: 35748505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Situ Formation of Ag Nanoparticles for Fiber Strain Sensors: Toward Textile-Based Wearable Applications.
    Kim H; Shaqeel A; Han S; Kang J; Yun J; Lee M; Lee S; Kim J; Noh S; Choi M; Lee J
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39868-39879. PubMed ID: 34383459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile.
    Sim HJ; Choi C; Kim SH; Kim KM; Lee CJ; Kim YT; Lepró X; Baughman RH; Kim SJ
    Sci Rep; 2016 Oct; 6():35153. PubMed ID: 27725779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Ultrastretchable and Self-Healable Nanocomposite Conductor Enabled by Autonomously Percolative Electrical Pathways.
    Kim SH; Seo H; Kang J; Hong J; Seong D; Kim HJ; Kim J; Mun J; Youn I; Kim J; Kim YC; Seok HK; Lee C; Tok JB; Bao Z; Son D
    ACS Nano; 2019 Jun; 13(6):6531-6539. PubMed ID: 31072094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A kirigami-inspired island-chain design for wearable moistureproof perovskite solar cells with high stretchability and performance stability.
    Qi J; Xiong H; Hou C; Zhang Q; Li Y; Wang H
    Nanoscale; 2020 Feb; 12(6):3646-3656. PubMed ID: 32016245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Growth of Nanosilver on Fabric for Flexible Stretchable Electrodes.
    Liao Q; Yin Y; Zhang J; Si W; Hou W; Qin L
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Whole Fabric-Assisted Thermoelectric Devices for Wearable Electronics.
    Hou Y; Yang Y; Wang Z; Li Z; Zhang X; Bethers B; Xiong R; Guo H; Yu H
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103574. PubMed ID: 34741444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications.
    Lo LW; Zhao J; Wan H; Wang Y; Chakrabartty S; Wang C
    ACS Appl Mater Interfaces; 2021 May; 13(18):21693-21702. PubMed ID: 33926183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kirigami-Based Highly Stretchable Thin Film Solar Cells That Are Mechanically Stable for More than 1000 Cycles.
    Li H; Wang W; Yang Y; Wang Y; Li P; Huang J; Li J; Lu Y; Li Z; Wang Z; Fan B; Fang J; Song W
    ACS Nano; 2020 Feb; 14(2):1560-1568. PubMed ID: 32023036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kirigami-Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability.
    Guan YS; Zhang Z; Tang Y; Yin J; Ren S
    Adv Mater; 2018 May; 30(20):e1706390. PubMed ID: 29603420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extremely Robust and Multifunctional Nanocomposite Fibers for Strain-Unperturbed Textile Electronics.
    Gu J; Li F; Zhu Y; Li D; Liu X; Wu B; Wu HA; Fan X; Ji X; Chen Y; Liang J
    Adv Mater; 2023 Apr; 35(15):e2209527. PubMed ID: 36661125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Printing the Ultra-Long Ag Nanowires Inks onto the Flexible Textile Substrate for Stretchable Electronics.
    Ke SH; Xue QW; Pang CY; Guo PW; Yao WJ; Zhu HP; Wu W
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052576
    [No Abstract]   [Full Text] [Related]  

  • 34. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence.
    Dong K; Peng X; Wang ZL
    Adv Mater; 2020 Feb; 32(5):e1902549. PubMed ID: 31348590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications.
    Atalay O
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29748505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretchable fabric generates electric power from woven thermoelectric fibers.
    Sun T; Zhou B; Zheng Q; Wang L; Jiang W; Snyder GJ
    Nat Commun; 2020 Jan; 11(1):572. PubMed ID: 31996675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Donut-Shaped Stretchable Kirigami: Enabling Electronics to Integrate with the Deformable Muscle.
    Morikawa Y; Yamagiwa S; Sawahata H; Numano R; Koida K; Kawano T
    Adv Healthc Mater; 2019 Dec; 8(23):e1900939. PubMed ID: 31697038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures.
    Qiang S; Carey T; Arbab A; Song W; Wang C; Torrisi F
    Nanoscale; 2019 May; 11(20):9912-9919. PubMed ID: 31066397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors.
    Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F
    Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Materials and design strategies for stretchable electroluminescent devices.
    Yoo J; Li S; Kim DH; Yang J; Choi MK
    Nanoscale Horiz; 2022 Jul; 7(8):801-821. PubMed ID: 35686540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.