These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

790 related articles for article (PubMed ID: 35480972)

  • 1. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies.
    Yazdanpanah Z; Johnston JD; Cooper DML; Chen X
    Front Bioeng Biotechnol; 2022; 10():824156. PubMed ID: 35480972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic microorganisms for the oxygenation of advanced 3D bioprinted tissues.
    Ortega JS; Corrales-Orovio R; Ralph P; Egaña JT; Gentile C
    Acta Biomater; 2023 Jul; 165():180-196. PubMed ID: 35562006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of cartilaginous templates for large bone defect healing.
    Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ
    Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing.
    Tan SH; Ngo ZH; Sci DB; Leavesley D; Liang K
    Tissue Eng Part B Rev; 2022 Feb; 28(1):160-181. PubMed ID: 33446047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational biomaterials of four-dimensional bioprinting for tissue regeneration.
    Faber L; Yau A; Chen Y
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37757814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioactive composite scaffolds for bone tissue engineering.
    Turnbull G; Clarke J; Picard F; Riches P; Jia L; Han F; Li B; Shu W
    Bioact Mater; 2018 Sep; 3(3):278-314. PubMed ID: 29744467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration.
    Liang R; Gu Y; Wu Y; Bunpetch V; Zhang S
    ACS Biomater Sci Eng; 2021 Mar; 7(3):806-816. PubMed ID: 33715367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics.
    Chen X; Han S; Wu W; Wu Z; Yuan Y; Wu J; Liu C
    Small; 2022 Sep; 18(36):e2106824. PubMed ID: 35060321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioink Formulations for Bone Tissue Regeneration.
    Li N; Guo R; Zhang ZJ
    Front Bioeng Biotechnol; 2021; 9():630488. PubMed ID: 33614614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro and In Vivo Biological Assessments of 3D-Bioprinted Scaffolds for Dental Applications.
    Mohd N; Razali M; Fauzi MB; Abu Kasim NH
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
    Wan Z; Zhang P; Liu Y; Lv L; Zhou Y
    Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.