These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35481196)

  • 21. Locally Concentrated Ionic Liquid Electrolyte with Partially Solvating Diluent for Lithium/Sulfurized Polyacrylonitrile Batteries.
    Liu X; Diemant T; Mariani A; Dong X; Di Pietro ME; Mele A; Passerini S
    Adv Mater; 2022 Dec; 34(49):e2207155. PubMed ID: 36316232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio.
    Chung SH; Manthiram A
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29271521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium-Sulfur Batteries.
    Peng Y; Wen Z; Liu C; Zeng J; Wang Y; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6986-6994. PubMed ID: 30644725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium-Sulfur Batteries.
    Zhao Q; Zhu Q; Miao J; Guan Z; Liu H; Chen R; An Y; Wu F; Xu B
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10882-10889. PubMed ID: 29533653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.
    Sun L; Wang D; Luo Y; Wang K; Kong W; Wu Y; Zhang L; Jiang K; Li Q; Zhang Y; Wang J; Fan S
    ACS Nano; 2016 Jan; 10(1):1300-8. PubMed ID: 26695394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Strategy for the Formulation of High-Energy-Density Cathodes via Porous Carbon for Li-S Batteries.
    Kim DS; Woo SG; Kang CJ; Lee JH; Lee JN; Yu JS; Kim YJ
    ChemSusChem; 2023 May; 16(10):e202202009. PubMed ID: 36577695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enabling High-Energy-Density Cathode for Lithium-Sulfur Batteries.
    Lu D; Li Q; Liu J; Zheng J; Wang Y; Ferrara S; Xiao J; Zhang JG; Liu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23094-23102. PubMed ID: 29877693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost-Effective Water-Soluble Poly(vinyl alcohol) as a Functional Binder for High-Sulfur-Loading Cathodes in Lithium-Sulfur Batteries.
    Liao J; Liu Z; Wang J; Ye Z
    ACS Omega; 2020 Apr; 5(14):8272-8282. PubMed ID: 32309738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing Lithium-Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition.
    Chung SH; Manthiram A
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43749-43759. PubMed ID: 30479126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasible Catalytic-Insoluble Strategy Enabled by Sulfurized Polyacrylonitrile with
    Yuan X; Zhu B; Feng J; Wang C; Cai X; Qin R
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):50936-50947. PubMed ID: 34668370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances and Perspectives in Lithium-Sulfur Pouch Cells.
    Zhang W; Li S; Zhou A; Song H; Cui Z; Du L
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Realizing High-Performance Li-S Batteries through Additive Manufactured and Chemically Enhanced Cathodes.
    Zheng M; Gao X; Sun Y; Adair K; Li M; Liang J; Li X; Liang J; Deng S; Yang X; Sun Q; Hu Y; Xiao Q; Li R; Sun X
    Small Methods; 2021 Sep; 5(9):e2100176. PubMed ID: 34928060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive.
    Liu D; Li Z; Li X; Chen X; Li Z; Yuan L; Huang Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6658-6666. PubMed ID: 35076203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries.
    Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.