These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35481279)
21. Precision genome editing in the CRISPR era. Salsman J; Dellaire G Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771 [TBL] [Abstract][Full Text] [Related]
22. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related]
23. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9. Ye L; Wang C; Hong L; Sun N; Chen D; Chen S; Han F Cell Discov; 2018; 4():46. PubMed ID: 30062046 [TBL] [Abstract][Full Text] [Related]
24. NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. Fritsche S; Reinfurt A; Fronek F; Steiger MG Fungal Biol Biotechnol; 2024 Aug; 11(1):10. PubMed ID: 39103967 [TBL] [Abstract][Full Text] [Related]
25. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Zhang JP; Li XL; Li GH; Chen W; Arakaki C; Botimer GD; Baylink D; Zhang L; Wen W; Fu YW; Xu J; Chun N; Yuan W; Cheng T; Zhang XB Genome Biol; 2017 Feb; 18(1):35. PubMed ID: 28219395 [TBL] [Abstract][Full Text] [Related]
26. A Versatile and Efficient Plant Protoplast Platform for Genome Editing by Cas9 RNPs. Jiang W; Bush J; Sheen J Front Genome Ed; 2021; 3():719190. PubMed ID: 35005700 [TBL] [Abstract][Full Text] [Related]
27. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion. Liu C; Yue Y; Xue Y; Zhou C; Ma Y Microb Cell Fact; 2023 Oct; 22(1):211. PubMed ID: 37838676 [TBL] [Abstract][Full Text] [Related]
28. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785 [TBL] [Abstract][Full Text] [Related]
29. The Chromatin Structure of CRISPR-Cas9 Target DNA Controls the Balance between Mutagenic and Homology-Directed Gene-Editing Events. Janssen JM; Chen X; Liu J; Gonçalves MAFV Mol Ther Nucleic Acids; 2019 Jun; 16():141-154. PubMed ID: 30884291 [TBL] [Abstract][Full Text] [Related]
30. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Albadri S; Del Bene F; Revenu C Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641 [TBL] [Abstract][Full Text] [Related]
32. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Schimmel J; Muñoz-Subirana N; Kool H; van Schendel R; van der Vlies S; Kamp JA; de Vrij FMS; Kushner SA; Smith GCM; Boulton SJ; Tijsterman M Cell Rep; 2023 Feb; 42(2):112019. PubMed ID: 36701230 [TBL] [Abstract][Full Text] [Related]
33. A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells. Carusillo A; Haider S; Schäfer R; Rhiel M; Türk D; Chmielewski KO; Klermund J; Mosti L; Andrieux G; Schäfer R; Cornu TI; Cathomen T; Mussolino C Nucleic Acids Res; 2023 May; 51(9):4660-4673. PubMed ID: 37070192 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors. Tran NT; Bashir S; Li X; Rossius J; Chu VT; Rajewsky K; Kühn R Front Genet; 2019; 10():365. PubMed ID: 31114605 [TBL] [Abstract][Full Text] [Related]
35. MDM2 antagonists promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells. Li Y; Lian D; Wang J; Zhao Y; Li Y; Liu G; Wu S; Deng S; Du X; Lian Z Mol Ther Nucleic Acids; 2023 Mar; 31():309-323. PubMed ID: 36726409 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination. Bashir S; Dang T; Rossius J; Wolf J; Kühn R BMC Biotechnol; 2020 Oct; 20(1):57. PubMed ID: 33097066 [TBL] [Abstract][Full Text] [Related]
37. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095 [TBL] [Abstract][Full Text] [Related]
38. Optimization of genome editing through CRISPR-Cas9 engineering. Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770 [TBL] [Abstract][Full Text] [Related]
39. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796 [TBL] [Abstract][Full Text] [Related]
40. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]