These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35481279)

  • 41. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans.
    Xu S
    J Genet Genomics; 2015 Aug; 42(8):413-21. PubMed ID: 26336798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing HR Frequency for Precise Genome Editing in Plants.
    Chen H; Neubauer M; Wang JP
    Front Plant Sci; 2022; 13():883421. PubMed ID: 35592579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decorating chromatin for enhanced genome editing using CRISPR-Cas9.
    Chen E; Lin-Shiao E; Trinidad M; Saffari Doost M; Colognori D; Doudna JA
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2204259119. PubMed ID: 36459645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing.
    Zhang Y; Zhang Z; Ge W
    J Biol Chem; 2018 Apr; 293(17):6611-6622. PubMed ID: 29500194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimizing the DNA Donor Template for Homology-Directed Repair of Double-Strand Breaks.
    Song F; Stieger K
    Mol Ther Nucleic Acids; 2017 Jun; 7():53-60. PubMed ID: 28624224
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
    Bloomer H; Smith RH; Hakami W; Larochelle A
    Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of NHEJ-Based DNA Repair after CRISPR-Mediated DNA Cleavage.
    Song B; Yang S; Hwang GH; Yu J; Bae S
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34203807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications.
    Zhou L; Yao S
    Mol Biomed; 2023 Apr; 4(1):10. PubMed ID: 37027099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair.
    Schubert MS; Thommandru B; Woodley J; Turk R; Yan S; Kurgan G; McNeill MS; Rettig GR
    Sci Rep; 2021 Sep; 11(1):19482. PubMed ID: 34593942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template.
    Aird EJ; Lovendahl KN; St Martin A; Harris RS; Gordon WR
    Commun Biol; 2018; 1():54. PubMed ID: 30271937
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cas9-based genome editing in Arabidopsis and tobacco.
    Li JF; Zhang D; Sheen J
    Methods Enzymol; 2014; 546():459-72. PubMed ID: 25398353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Homology-directed repair in mouse cells increased by CasRx-mediated knockdown or co-expressing Kaposi's sarcoma-associated herpesvirus ORF52.
    Pan H; Yu W; Zhang M
    Biosci Rep; 2019 Oct; 39(10):. PubMed ID: 31519773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.
    Miki D; Zinta G; Zhang W; Peng F; Feng Z; Zhu JK
    Methods Mol Biol; 2021; 2200():121-146. PubMed ID: 33175375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
    Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM
    Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos.
    Aksoy YA; Nguyen DT; Chow S; Chung RS; Guillemin GJ; Cole NJ; Hesselson D
    Commun Biol; 2019; 2():198. PubMed ID: 31149642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fusion of histone variants to Cas9 suppresses non-homologous end joining.
    Kato-Inui T; Takahashi G; Ono T; Miyaoka Y
    PLoS One; 2024; 19(5):e0288578. PubMed ID: 38739603
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
    Paulsen BS; Mandal PK; Frock RL; Boyraz B; Yadav R; Upadhyayula S; Gutierrez-Martinez P; Ebina W; Fasth A; Kirchhausen T; Talkowski ME; Agarwal S; Alt FW; Rossi DJ
    Nat Biomed Eng; 2017 Nov; 1(11):878-888. PubMed ID: 31015609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.