BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35481723)

  • 21. Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review.
    Sobczak M; Kędra K
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation.
    Geevarghese R; Sajjadi SS; Hudecki A; Sajjadi S; Jalal NR; Madrakian T; Ahmadi M; Włodarczyk-Biegun MK; Ghavami S; Likus W; Siemianowicz K; Łos MJ
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay.
    Asefnejad A; Khorasani MT; Behnamghader A; Farsadzadeh B; Bonakdar S
    Int J Nanomedicine; 2011; 6():2375-84. PubMed ID: 22072874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous Nanogold/Polyurethane Scaffolds with Improved Antibiofilm, Mechanical, and Thermal Properties and with Reduced Effects on Cell Viability: A Suitable Material for Soft Tissue Applications.
    Tamayo L; Acuña D; Riveros AL; Kogan MJ; Azócar MI; Páez M; Leal M; Urzúa M; Cerda E
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13361-13372. PubMed ID: 29627980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds.
    Zhang F; King MW
    Adv Healthc Mater; 2020 Jul; 9(13):e1901358. PubMed ID: 32424996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering.
    Laschke MW; Strohe A; Scheuer C; Eglin D; Verrier S; Alini M; Pohlemann T; Menger MD
    Acta Biomater; 2009 Jul; 5(6):1991-2001. PubMed ID: 19286433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
    Chen J; Dong R; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering.
    Sadeghianmaryan A; Karimi Y; Naghieh S; Alizadeh Sardroud H; Gorji M; Chen X
    Appl Biochem Biotechnol; 2020 Jun; 191(2):567-578. PubMed ID: 31823274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation.
    Asti A; Gioglio L
    Int J Artif Organs; 2014 Mar; 37(3):187-205. PubMed ID: 24744164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.
    Xu C; Huang Y; Wu J; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20377-88. PubMed ID: 26312436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.
    Baheiraei N; Yeganeh H; Ai J; Gharibi R; Azami M; Faghihi F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():24-37. PubMed ID: 25280676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactive Polyurethane-Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering.
    Yuan Y; Tyson C; Szyniec A; Agro S; Tavakol TN; Harmon A; Lampkins D; Pearson L; Dumas JE; Taite LJ
    Gels; 2024 Jan; 10(2):. PubMed ID: 38391438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN; Woodhouse KA; Fromstein JD; Chase DB; Rabolt JF
    J Biomater Sci Polym Ed; 2007; 18(6):743-58. PubMed ID: 17623555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold.
    Hong Y; Huber A; Takanari K; Amoroso NJ; Hashizume R; Badylak SF; Wagner WR
    Biomaterials; 2011 May; 32(13):3387-94. PubMed ID: 21303718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.
    Xue Y; Sant V; Phillippi J; Sant S
    Acta Biomater; 2017 Jan; 48():2-19. PubMed ID: 27780764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.