These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35481893)

  • 1. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.
    Gramazio S; Trauth J; Bezold F; Essen LO; Taxis C; Spadaccini R
    Biotechnol J; 2022 Aug; 17(8):e2100676. PubMed ID: 35481893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic regulation of engineered cellular metabolism for microbial chemical production.
    Zhao EM; Zhang Y; Mehl J; Park H; Lalwani MA; Toettcher JE; Avalos JL
    Nature; 2018 Mar; 555(7698):683-687. PubMed ID: 29562237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Amplification Circuits for Light-Induced Metabolic Control.
    Zhao EM; Lalwani MA; Chen JM; Orillac P; Toettcher JE; Avalos JL
    ACS Synth Biol; 2021 May; 10(5):1143-1154. PubMed ID: 33835777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rise and shine of yeast optogenetics.
    Figueroa D; Rojas V; Romero A; Larrondo LF; Salinas F
    Yeast; 2021 Feb; 38(2):131-146. PubMed ID: 33119964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain.
    Zelle RM; de Hulster E; Kloezen W; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2010 Feb; 76(3):744-50. PubMed ID: 20008165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast.
    Bezold F; Scheffer J; Wendering P; Razaghi-Moghadam Z; Trauth J; Pook B; Nußhär H; Hasenjäger S; Nikoloski Z; Essen LO; Taxis C
    Metab Eng; 2023 Sep; 79():97-107. PubMed ID: 37422133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The
    Lalwani MA; Zhao EM; Wegner SA; Avalos JL
    ACS Synth Biol; 2021 Aug; 10(8):2060-2075. PubMed ID: 34346207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications.
    Lovelett RJ; Zhao EM; Lalwani MA; Toettcher JE; Kevrekidis IG; L Avalos J
    ACS Synth Biol; 2021 Feb; 10(2):219-227. PubMed ID: 33492138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.
    Harmer ZP; Thompson JC; Cole DL; Venturelli OS; Zavala VM; McClean MN
    ACS Synth Biol; 2024 May; 13(5):1424-1433. PubMed ID: 38684225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering.
    Zhao EM; Lalwani MA; Lovelett RJ; García-Echauri SA; Hoffman SM; Gonzalez CL; Toettcher JE; Kevrekidis IG; Avalos JL
    ACS Synth Biol; 2020 Dec; 9(12):3254-3266. PubMed ID: 33232598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures.
    Minami SA; Garimella SS; Shah PS
    Biotechnol J; 2024 Jan; 19(1):e2300071. PubMed ID: 37877211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.
    Romero A; Rojas V; Delgado V; Salinas F; Larrondo LF
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization.
    Faria C; Borges N; Rocha I; Santos H
    Microb Cell Fact; 2018 Nov; 17(1):178. PubMed ID: 30445960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Control of Microbial Consortia Populations for Chemical Production.
    Lalwani MA; Kawabe H; Mays RL; Hoffman SM; Avalos JL
    ACS Synth Biol; 2021 Aug; 10(8):2015-2029. PubMed ID: 34351122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic strategies for the control of gene expression in yeasts.
    Pérez ALA; Piva LC; Fulber JPC; de Moraes LMP; De Marco JL; Vieira HLA; Coelho CM; Reis VCB; Torres FAG
    Biotechnol Adv; 2022; 54():107839. PubMed ID: 34592347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Controlled Fermentations for Microbial Chemical and Protein Production.
    Hoffman SM; Lalwani MA; Avalos JL
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.