These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35481906)
1. Coupling CRISPR interference with FACS enrichment: New approach in glycoengineering of CHO cell lines for therapeutic glycoprotein production. Glinšek K; Kramer L; Krajnc A; Kranjc E; Pirher N; Marušič J; Hellmann L; Podobnik B; Štrukelj B; Ausländer D; Gaber R Biotechnol J; 2022 Jul; 17(7):e2100499. PubMed ID: 35481906 [TBL] [Abstract][Full Text] [Related]
2. Glycoengineering in CHO Cells: Advances in Systems Biology. Tejwani V; Andersen MR; Nam JH; Sharfstein ST Biotechnol J; 2018 Mar; 13(3):e1700234. PubMed ID: 29316325 [TBL] [Abstract][Full Text] [Related]
3. Rapid Antibody Glycoengineering in Chinese Hamster Ovary Cells. Marbiah M; Kotidis P; Donini R; Gómez IA; Jimenez Del Val I; Haslam SM; Polizzi KM; Kontoravdi C J Vis Exp; 2022 Jun; (184):. PubMed ID: 35723478 [TBL] [Abstract][Full Text] [Related]
4. Glycoengineering of Mammalian Expression Systems on a Cellular Level. Heffner KM; Wang Q; Hizal DB; Can Ö; Betenbaugh MJ Adv Biochem Eng Biotechnol; 2021; 175():37-69. PubMed ID: 29532110 [TBL] [Abstract][Full Text] [Related]
5. QbD-guided pharmaceutical development of Pembrolizumab biosimilar candidate PSG-024 propelled to industry meeting primary requirements of comparability to Keytruda®. Jaffar-Aghaei M; Khanipour F; Maghsoudi A; Sarvestani R; Mohammadian M; Maleki M; Havasi F; Rahmani H; Karagah AH; Kazemali MR Eur J Pharm Sci; 2022 Jun; 173():106171. PubMed ID: 35378209 [TBL] [Abstract][Full Text] [Related]
6. Predictive glycoengineering of biosimilars using a Markov chain glycosylation model. Spahn PN; Hansen AH; Kol S; Voldborg BG; Lewis NE Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27860290 [TBL] [Abstract][Full Text] [Related]
7. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691 [TBL] [Abstract][Full Text] [Related]
8. Identifying the differences in mechanisms of mycophenolic acid controlling fucose content of glycoproteins expressed in different CHO cell lines. Zhang A; Tsang VL; Markely LR; Kurt L; Huang YM; Prajapati S; Kshirsagar R Biotechnol Bioeng; 2016 Nov; 113(11):2367-76. PubMed ID: 27093551 [TBL] [Abstract][Full Text] [Related]
9. Analytical comparability assessment on glycosylation of ziv-aflibercept and the biosimilar candidate. Shen Z; Wang Y; Xu H; Zhang Q; Sha C; Sun B; Li Q Int J Biol Macromol; 2021 Jun; 180():494-509. PubMed ID: 33684428 [TBL] [Abstract][Full Text] [Related]
10. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. Popp O; Moser S; Zielonka J; Rüger P; Hansen S; Plöttner O MAbs; 2018; 10(2):290-303. PubMed ID: 29173063 [TBL] [Abstract][Full Text] [Related]
11. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. Shen CC; Sung LY; Lin SY; Lin MW; Hu YC ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635 [TBL] [Abstract][Full Text] [Related]
12. Glycoengineering of CHO Cells to Improve Product Quality. Wang Q; Yin B; Chung CY; Betenbaugh MJ Methods Mol Biol; 2017; 1603():25-44. PubMed ID: 28493121 [TBL] [Abstract][Full Text] [Related]
13. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
14. Genome-scale functional genomics screening highlights genes impacting protein fucosylation in Chinese hamster ovary cells. Barlan K; Bhide GP; White DR; Lake MR; Lu C; Rieder SE; Fan L; Hsieh CL SLAS Discov; 2024 Jan; 29(1):52-58. PubMed ID: 37844762 [TBL] [Abstract][Full Text] [Related]
15. Glycosylation control technologies for recombinant therapeutic proteins. Gupta SK; Shukla P Appl Microbiol Biotechnol; 2018 Dec; 102(24):10457-10468. PubMed ID: 30334089 [TBL] [Abstract][Full Text] [Related]
16. Comparison of two glycoengineering strategies to control the fucosylation of a monoclonal antibody. Mishra N; Spearman M; Donald L; Perreault H; Butler M J Biotechnol; 2020; 324S():100015. PubMed ID: 34154738 [TBL] [Abstract][Full Text] [Related]
17. A Markov chain model for N-linked protein glycosylation--towards a low-parameter tool for model-driven glycoengineering. Spahn PN; Hansen AH; Hansen HG; Arnsdorf J; Kildegaard HF; Lewis NE Metab Eng; 2016 Jan; 33():52-66. PubMed ID: 26537759 [TBL] [Abstract][Full Text] [Related]
18. Glycosylation Analysis of Therapeutic Glycoproteins Produced in CHO Cells. Carillo S; Mittermayr S; Farrell A; Albrecht S; Bones J Methods Mol Biol; 2017; 1603():227-241. PubMed ID: 28493134 [TBL] [Abstract][Full Text] [Related]
19. Glycosylation of therapeutic proteins in different production systems. Werner RG; Kopp K; Schlueter M Acta Paediatr; 2007 Apr; 96(455):17-22. PubMed ID: 17391433 [TBL] [Abstract][Full Text] [Related]
20. N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. van Berkel PH; Gerritsen J; Perdok G; Valbjørn J; Vink T; van de Winkel JG; Parren PW Biotechnol Prog; 2009; 25(1):244-51. PubMed ID: 19224598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]