These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 35481938)

  • 1. In Vivo Production of Diverse β-Amino Acid-Containing Proteins.
    Lakis E; Magyari S; Piel J
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202202695. PubMed ID: 35481938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using LanM Enzymes to Modify Glucagon-Like Peptides 1 and 2 in E.coli.
    Larsen CK; Lindquist P; Rosenkilde M; Madsen AR; Haselmann K; Glendorf T; Olesen K; Kodal ALB; Tørring T
    Chembiochem; 2024 Jul; 25(13):e202400201. PubMed ID: 38701360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Engineering in Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Do T; Link AJ
    Biochemistry; 2023 Jan; 62(2):201-209. PubMed ID: 35006671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN.
    Calvopina-Chavez DG; Bursey DM; Tseng Y-J; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS
    Appl Environ Microbiol; 2024 Jun; 90(6):e0024424. PubMed ID: 38780510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Landscape of Noncanonical Amino Acids in RiPP Biosynthesis.
    Johnson BA; Clark KA; Bushin LB; Spolar CN; Seyedsayamdost MR
    J Am Chem Soc; 2024 Feb; 146(6):3805-3815. PubMed ID: 38316431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs).
    Han SW; Won HS
    Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel types of RiPP-modifying enzymes.
    Richter D; Piel J
    Curr Opin Chem Biol; 2024 Jun; 80():102463. PubMed ID: 38729090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids.
    Nickling JH; Baumann T; Schmitt FJ; Bartholomae M; Kuipers OP; Friedrich T; Budisa N
    J Vis Exp; 2018 May; (135):. PubMed ID: 29781997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Promiscuity of the Triceptide Maturase XncB Leads to Incorporation of Various Amino Acids and Detection of Oxygenated Products.
    Phan CS; Chang L; Nguyen TQN; Suarez AFL; Ho XH; Chen H; Koh IYF; Morinaka BI
    ACS Chem Biol; 2024 Apr; 19(4):855-860. PubMed ID: 38452396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Mining of Myxopeptins Reveals a Class of Lanthipeptide-Derived Linear Dehydroamino Acid-Containing Peptides from
    Wang H; Han Y; Wang X; Jia Y; Zhang Y; Müller R; Huo L
    ACS Chem Biol; 2023 Oct; 18(10):2163-2169. PubMed ID: 37703191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides Containing C-C Cross-Links.
    Laws D; Plouch EV; Blakey SB
    J Nat Prod; 2022 Oct; 85(10):2519-2539. PubMed ID: 36136399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micrococcin cysteine-to-thiazole conversion through transient interactions between a scaffolding protein and two modification enzymes.
    Calvopina-Chavez DG; Bursey DM; Tseng YJ; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan-Centric Bioinformatics Identifies New Lasso Peptide Modifications.
    Harris LA; Saad H; Shelton KE; Zhu L; Guo X; Mitchell DA
    Biochemistry; 2024 Apr; 63(7):865-879. PubMed ID: 38498885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of Borosin Catalytic Strategies and Function through Bioinformatic Profiling.
    Lee AR; Carter RS; Imani AS; Dommaraju SR; Hudson GA; Mitchell DA; Freeman MF
    ACS Chem Biol; 2024 May; 19(5):1116-1124. PubMed ID: 38695893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme.
    Kubiak X; Polsinelli I; Chavas LMG; Fyfe CD; Guillot A; Fradale L; Brewee C; Grimaldi S; Gerbaud G; Thureau A; Legrand P; Berteau O; Benjdia A
    Nat Chem Biol; 2024 Mar; 20(3):382-391. PubMed ID: 38158457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu
    de Vries RH; Viel JH; Kuipers OP; Roelfes G
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3946-3950. PubMed ID: 33185967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-dependent post-translational modifications guide the biosynthesis of a new class of hypermodified peptides.
    Pei ZF; Zhu L; Nair SK
    Nat Commun; 2023 Nov; 14(1):7734. PubMed ID: 38007494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of macrocyclic peptides with C-terminal β-amino-α-keto acid groups by three different metalloenzymes.
    Nguyen DT; Zhu L; Gray DL; Woods TJ; Padhi C; Flatt KM; Mitchell DA; van der Donk WA
    bioRxiv; 2024 Jan; ():. PubMed ID: 37965205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Aza-Michael Addition to Dehydrated Amino Acids in Natural Antimicrobial Peptides.
    Vargiu M; Xu Y; Kuipers OP; Roelfes G
    Chembiochem; 2024 Apr; 25(7):e202400043. PubMed ID: 38334959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Removal of Leader Peptides from Lanthipeptides by Incorporation of a Hydroxy Acid.
    Bindman NA; Bobeica SC; Liu WR; van der Donk WA
    J Am Chem Soc; 2015 Jun; 137(22):6975-8. PubMed ID: 26006047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.