These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35482183)

  • 1. Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation.
    Kang BH; Lax BM; Wittrup KD
    Methods Mol Biol; 2022; 2491():29-62. PubMed ID: 35482183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Engineering and Selection Using Yeast Surface Display.
    Angelini A; Chen TF; de Picciotto S; Yang NJ; Tzeng A; Santos MS; Van Deventer JA; Traxlmayr MW; Wittrup KD
    Methods Mol Biol; 2015; 1319():3-36. PubMed ID: 26060067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolating and engineering human antibodies using yeast surface display.
    Chao G; Lau WL; Hackel BJ; Sazinsky SL; Lippow SM; Wittrup KD
    Nat Protoc; 2006; 1(2):755-68. PubMed ID: 17406305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast display of engineered antibody domains.
    Zhao Q; Zhu Z; Dimitrov DS
    Methods Mol Biol; 2012; 899():73-84. PubMed ID: 22735947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometric screening of yeast surface display libraries.
    Feldhaus M; Siegel R
    Methods Mol Biol; 2004; 263():311-32. PubMed ID: 14976374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Affinity Maturation of Novel Anti-PD-L1 Antibodies by a Fast Drop of the Antigen Concentration and FACS Selection of Yeast Libraries.
    Cembrola B; Ruzza V; Troise F; Esposito ML; Sasso E; Cafaro V; Passariello M; Visconte F; Raia M; Del Vecchio L; D'Alise AM; Cortese R; Scarselli E; Zambrano N; De Lorenzo C; Nicosia A
    Biomed Res Int; 2019; 2019():6051870. PubMed ID: 31976323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of pH-Sensitive Antibody Fragments by Fluorescence-Activated Cell Sorting and Yeast Surface Display.
    Schröter C; Krah S; Beck J; Könning D; Grzeschik J; Valldorf B; Zielonka S; Kolmar H
    Methods Mol Biol; 2018; 1685():311-331. PubMed ID: 29086318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Display of a naïve affibody library on staphylococci for selection of binders by means of flow cytometry sorting.
    Dahlsson Leitao C; Mestre Borras A; Jonsson A; Malm M; Kronqvist N; Fleetwood F; Sandersjöö L; Uhlén M; Löfblom J; Ståhl S; Lindberg H
    Biochem Biophys Res Commun; 2023 May; 655():75-81. PubMed ID: 36933310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolating and Engineering Fluorescence-Activating Proteins Using Yeast Surface Display.
    El Hajji L; Benaissa H; Gautier A
    Methods Mol Biol; 2022; 2491():593-626. PubMed ID: 35482206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries.
    Bacon K; Menegatti S; Rao BM
    Methods Mol Biol; 2022; 2491():387-415. PubMed ID: 35482201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein selection using yeast surface display.
    Gera N; Hussain M; Rao BM
    Methods; 2013 Mar; 60(1):15-26. PubMed ID: 22465794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast surface display for protein engineering and characterization.
    Gai SA; Wittrup KD
    Curr Opin Struct Biol; 2007 Aug; 17(4):467-73. PubMed ID: 17870469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.
    Yeung YA; Wittrup KD
    Biotechnol Prog; 2002; 18(2):212-20. PubMed ID: 11934287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Endoplasmic Reticulum Sequestration Screening for the Engineering of Proteases from Libraries Expressed in Yeast.
    Yi L; Taft JM; Li Q; Gebhard MC; Georgiou G; Iverson BL
    Methods Mol Biol; 2015; 1319():81-93. PubMed ID: 26060071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.
    Zhang K; Bhuripanyo K; Wang Y; Yin J
    Methods Mol Biol; 2015; 1319():245-60. PubMed ID: 26060080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of yeast surface-displayed cDNA libraries.
    Bidlingmaier S; Liu B
    Methods Mol Biol; 2011; 729():199-210. PubMed ID: 21365492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guidelines, Strategies, and Principles for the Directed Evolution of Cross-Reactive Antibodies Using Yeast Surface Display Technology.
    Linciano S; Wong EL; Mazzocato Y; Chinellato M; Scaravetti T; Caregnato A; Cacco V; Romanyuk Z; Angelini A
    Methods Mol Biol; 2022; 2491():251-262. PubMed ID: 35482195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Evolution of Protein Thermal Stability Using Yeast Surface Display.
    Traxlmayr MW; Shusta EV
    Methods Mol Biol; 2017; 1575():45-65. PubMed ID: 28255874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and diversification of yeast cell surface displayed libraries by yeast mating: application to the affinity maturation of Fab antibody fragments.
    Blaise L; Wehnert A; Steukers MP; van den Beucken T; Hoogenboom HR; Hufton SE
    Gene; 2004 Nov; 342(2):211-8. PubMed ID: 15527980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly avid magnetic bead capture: an efficient selection method for de novo protein engineering utilizing yeast surface display.
    Ackerman M; Levary D; Tobon G; Hackel B; Orcutt KD; Wittrup KD
    Biotechnol Prog; 2009; 25(3):774-83. PubMed ID: 19363813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.