These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35482427)

  • 1. "Plug and Play" Photosensitizer-Catalyst Dyads for Water Oxidation.
    Chalil Oglou R; Ulusoy Ghobadi TG; Ozbay E; Karadas F
    ACS Appl Mater Interfaces; 2022 May; 14(18):21131-21140. PubMed ID: 35482427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies.
    Ulusoy Ghobadi TG; Ozbay E; Karadas F
    Chemistry; 2021 Feb; 27(11):3638-3649. PubMed ID: 33197292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precious Metal-Free Photocatalytic Water Oxidation by a Layered Double Hydroxide-Prussian Blue Analogue Hybrid Assembly.
    Akbari SS; Karadas F
    ChemSusChem; 2021 Jan; 14(2):679-685. PubMed ID: 33159387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light-driven water oxidation with a ruthenium sensitizer and a cobalt-based catalyst connected with a polymeric platform.
    Kap Z; Karadas F
    Faraday Discuss; 2019 Jul; 215(0):111-122. PubMed ID: 30941392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic Systems for CO
    Kumagai H; Tamaki Y; Ishitani O
    Acc Chem Res; 2022 Apr; 55(7):978-990. PubMed ID: 35255207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation.
    Ghobadi TGU; Ghobadi A; Demirtas M; Buyuktemiz M; Ozvural KN; Yildiz EA; Erdem E; Yaglioglu HG; Durgun E; Dede Y; Ozbay E; Karadas F
    Chemistry; 2021 Jun; 27(35):8966-8976. PubMed ID: 33929068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitizer-catalyst assemblies for water oxidation.
    Wang L; Mirmohades M; Brown A; Duan L; Li F; Daniel Q; Lomoth R; Sun L; Hammarström L
    Inorg Chem; 2015 Mar; 54(6):2742-51. PubMed ID: 25700086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light harvesting zinc naphthalocyanine-perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media.
    El-Khouly ME; Gutiérrez AM; Sastre-Santos Á; Fernández-Lázaro F; Fukuzumi S
    Phys Chem Chem Phys; 2012 Mar; 14(10):3612-21. PubMed ID: 22311067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.
    Wei J; Feng Y; Zhou P; Liu Y; Xu J; Xiang R; Ding Y; Zhao C; Fan L; Hu C
    ChemSusChem; 2015 Aug; 8(16):2630-4. PubMed ID: 26130568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen.
    Li G; Mark MF; Lv H; McCamant DW; Eisenberg R
    J Am Chem Soc; 2018 Feb; 140(7):2575-2586. PubMed ID: 29419294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Light-Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO
    Ghobadi TGU; Ghobadi A; Soydan MC; Vishlaghi MB; Kaya S; Karadas F; Ozbay E
    ChemSusChem; 2020 May; 13(10):2577-2588. PubMed ID: 32157799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic water oxidation with a Prussian blue modified brown TiO
    Gundogdu G; Ulusoy Ghobadi TG; Sadigh Akbari S; Ozbay E; Karadas F
    Chem Commun (Camb); 2021 Jan; 57(4):508-511. PubMed ID: 33331359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system.
    Curtin PN; Tinker LL; Burgess CM; Cline ED; Bernhard S
    Inorg Chem; 2009 Nov; 48(22):10498-506. PubMed ID: 19606847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of a [Co
    Nandan SP; Gumerova NI; Schubert JS; Saito H; Rompel A; Cherevan A; Eder D
    ACS Mater Au; 2022 Jul; 2(4):505-515. PubMed ID: 35856075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms.
    Renger G
    Biochim Biophys Acta; 2012 Aug; 1817(8):1164-76. PubMed ID: 22353626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge recombination reactions in photosystem II. 2. Transient absorbance difference spectra and their temperature dependence.
    Hillmann B; Brettel K; van Mieghem F; Kamlowski A; Rutherford AW; Schlodder E
    Biochemistry; 1995 Apr; 34(14):4814-27. PubMed ID: 7718588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Photocatalytic Activity of CoFe Prussian Blue Analogue Modified SrTiO
    Peighambardoust NS; Sadigh Akbari S; Lomlu R; Aydemir U; Karadas F
    ACS Mater Au; 2024 Mar; 4(2):214-223. PubMed ID: 38496046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Photosensitizer-Cobaloxime Hybrids for Solar-Driven H2 Production in Aqueous Aerobic Conditions.
    Mir AQ; Dolui D; Khandelwal S; Bhatt H; Kumari B; Barman S; Kanvah S; Dutta A
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.
    Xue LX; Meng TT; Yang W; Wang KZ
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):95-105. PubMed ID: 26164739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.