These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35482427)

  • 21. Designing new quinoline-based organic photosensitizers for dye-sensitized solar cells (DSSC): a theoretical investigation.
    Dos Santos GC; Oliveira EF; Lavarda FC; da Silva-Filho LC
    J Mol Model; 2019 Feb; 25(3):75. PubMed ID: 30798441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines.
    Yuan YJ; Yu ZT; Cai JG; Zheng C; Huang W; Zou ZG
    ChemSusChem; 2013 Aug; 6(8):1357-65. PubMed ID: 23843363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rationalizing the Geometries of the Water Oxidising Complex in the Atomic Resolution, Nominal S
    Petrie S; Terrett R; Stranger R; Pace RJ
    Chemphyschem; 2020 Apr; 21(8):785-801. PubMed ID: 32133758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosystem II: The machinery of photosynthetic water splitting.
    Renger G; Renger T
    Photosynth Res; 2008; 98(1-3):53-80. PubMed ID: 18830685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible light-driven water oxidation using a covalently-linked molecular catalyst-sensitizer dyad assembled on a TiO
    Yamamoto M; Wang L; Li F; Fukushima T; Tanaka K; Sun L; Imahori H
    Chem Sci; 2016 Feb; 7(2):1430-1439. PubMed ID: 29910901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the reaction coordinate of photosynthetic water oxidation by kinetic measurements of 355 nm absorption changes at different temperatures in photosystem II preparations suspended in either H2O or D2O.
    Karge M; Irrgang KD; Renger G
    Biochemistry; 1997 Jul; 36(29):8904-13. PubMed ID: 9220978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolate ligand system: syntheses, characterizations, and organic light emitting device applications of 4-coordinated bis(2-oxazolylphenolate) zinc(II) complexes.
    Son HJ; Han WS; Chun JY; Kang BK; Kwon SN; Ko J; Han SJ; Lee C; Kim SJ; Kang SO
    Inorg Chem; 2008 Jul; 47(13):5666-76. PubMed ID: 18543905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Noble-Metal-Free Heterogeneous Photosensitizer-Relay Catalyst Triad That Catalyzes Water Oxidation under Visible Light.
    Ulusoy Ghobadi TG; Akhuseyin Yildiz E; Buyuktemiz M; Sadigh Akbari S; Topkaya D; İsci Ü; Dede Y; Yaglioglu HG; Karadas F
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17173-17177. PubMed ID: 30395698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-harvesting fullerene dyads as organic triplet photosensitizers for triplet-triplet annihilation upconversions.
    Wu W; Zhao J; Sun J; Guo S
    J Org Chem; 2012 Jun; 77(12):5305-12. PubMed ID: 22616881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast and persistent electrocatalytic water oxidation by Co-Fe Prussian blue coordination polymers.
    Pintado S; Goberna-Ferrón S; Escudero-Adán EC; Galán-Mascarós JR
    J Am Chem Soc; 2013 Sep; 135(36):13270-3. PubMed ID: 23978044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxyectoine protects Mn-depleted photosystem II against photoinhibition acting as a source of electrons.
    Yanykin DV; Malferrari M; Rapino S; Venturoli G; Semenov AY; Mamedov MD
    Photosynth Res; 2019 Aug; 141(2):165-179. PubMed ID: 30701483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of rhenium-porphyrin dyads for CO
    Windle CD; George MW; Perutz RN; Summers PA; Sun XZ; Whitwood AC
    Chem Sci; 2015 Dec; 6(12):6847-6864. PubMed ID: 29861927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water structure near the surface of Weyl semimetals as catalysts in photocatalytic proton reduction.
    Gujt J; Zimmer P; Zysk F; Süß V; Felser C; Bauer M; Kühne TD
    Struct Dyn; 2020 May; 7(3):034101. PubMed ID: 32478126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substituted 2,4-Di(pyridin-2-yl)pyrimidine-Based Ruthenium Photosensitizers for Hydrogen Photoevolution under Red Light.
    Rupp MT; Auvray T; Shevchenko N; Swoboda L; Hanan GS; Kurth DG
    Inorg Chem; 2021 Jan; 60(1):292-302. PubMed ID: 33322895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Robust, Precious-Metal-Free Dye-Sensitized Photoanode for Water Oxidation: A Nanosecond-Long Excited-State Lifetime through a Prussian Blue Analogue.
    Ulusoy Ghobadi TG; Ghobadi A; Buyuktemiz M; Yildiz EA; Berna Yildiz D; Yaglioglu HG; Dede Y; Ozbay E; Karadas F
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):4082-4090. PubMed ID: 31837274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced photocatalytic hydrogen production from an MCM-41-immobilized photosensitizer-[Fe-Fe] hydrogenase mimic dyad.
    Wang W; Yu T; Zeng Y; Chen J; Yang G; Li Y
    Photochem Photobiol Sci; 2014 Nov; 13(11):1590-7. PubMed ID: 25238441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dye-catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers.
    Decavoli C; Boldrini CL; Trifiletti V; Luong S; Fenwick O; Manfredi N; Abbotto A
    RSC Adv; 2021 Jan; 11(10):5311-5319. PubMed ID: 35423072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperfine structure of the photoexcited triplet state 3P680 in plant PS II reaction centres as determined by pulse ENDOR spectroscopy.
    Lendzian F; Bittl R; Telfer A; Lubitz W
    Biochim Biophys Acta; 2003 Aug; 1605(1-3):35-46. PubMed ID: 12907299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.