These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 35482598)
1. Robust Superamphiphobic Fabrics with Excellent Hot Liquid Repellency and Hot Water Vapor Resistance. Tian N; Chen K; Wei J; Zhang J Langmuir; 2022 May; 38(18):5891-5899. PubMed ID: 35482598 [TBL] [Abstract][Full Text] [Related]
2. Durable Superamphiphobic and Photocatalytic Fabrics: Tackling the Loss of Super-Non-Wettability Due to Surface Organic Contamination. Wang W; Liu R; Chi H; Zhang T; Xu Z; Zhao Y ACS Appl Mater Interfaces; 2019 Sep; 11(38):35327-35332. PubMed ID: 31424912 [TBL] [Abstract][Full Text] [Related]
3. Efficient scald-preventing enabled by robust polyester fabrics with hot water repellency and water impalement resistance. Tian N; Wei J; Li Y; Li B; Zhang J J Colloid Interface Sci; 2020 Apr; 566():69-78. PubMed ID: 31991366 [TBL] [Abstract][Full Text] [Related]
4. Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes. Zhang J; Yu B; Gao Z; Li B; Zhao X Langmuir; 2017 Jan; 33(2):510-518. PubMed ID: 28025880 [TBL] [Abstract][Full Text] [Related]
5. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids. Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J J Colloid Interface Sci; 2019 Mar; 540():228-236. PubMed ID: 30641400 [TBL] [Abstract][Full Text] [Related]
6. Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure. Peng S; Yang X; Tian D; Deng W ACS Appl Mater Interfaces; 2014 Sep; 6(17):15188-97. PubMed ID: 25116143 [TBL] [Abstract][Full Text] [Related]
7. Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes. Zhai N; Fan L; Li L; Zhang J J Colloid Interface Sci; 2017 Nov; 505():622-630. PubMed ID: 28651202 [TBL] [Abstract][Full Text] [Related]
8. Durable, Highly Electrically Conductive Cotton Fabrics with Healable Superamphiphobicity. Li X; Li Y; Guan T; Xu F; Sun J ACS Appl Mater Interfaces; 2018 Apr; 10(14):12042-12050. PubMed ID: 29557643 [TBL] [Abstract][Full Text] [Related]
9. Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity. Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J J Colloid Interface Sci; 2020 Oct; 578():262-272. PubMed ID: 32531556 [TBL] [Abstract][Full Text] [Related]
10. In Situ, One-Pot Method to Prepare Robust Superamphiphobic Cotton Fabrics for High Buoyancy and Good Antifouling. Han X; Gong X ACS Appl Mater Interfaces; 2021 Jul; 13(26):31298-31309. PubMed ID: 34156810 [TBL] [Abstract][Full Text] [Related]
11. Preparation of Mechanically Stable Superamphiphobic Coatings via Combining Phase Separation of Adhesive and Fluorinated SiO Wei J; Liang W; Zhang J Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368302 [TBL] [Abstract][Full Text] [Related]
12. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. Wang H; Zhou H; Gestos A; Fang J; Lin T ACS Appl Mater Interfaces; 2013 Oct; 5(20):10221-6. PubMed ID: 24073919 [TBL] [Abstract][Full Text] [Related]
13. Efficient and Facile Method of Preparing Superamphiphobic Surfaces on Cu Substrates. Zhu J; Liao K ACS Appl Mater Interfaces; 2021 Aug; 13(31):37830-37839. PubMed ID: 34323070 [TBL] [Abstract][Full Text] [Related]
14. Photocatalytic Superamphiphobic Coatings and the Effect of Surface Microstructures on Superamphiphobicity. Liu G; Xia H; Zhang W; Lang L; Geng H; Song L; Niu Y ACS Appl Mater Interfaces; 2021 Mar; 13(10):12509-12520. PubMed ID: 33653025 [TBL] [Abstract][Full Text] [Related]
15. Highly transparent superamphiphobic surfaces by elaborate microstructure regulation. Zhang J; Yu B; Wei Q; Li B; Li L; Yang Y J Colloid Interface Sci; 2019 Oct; 554():250-259. PubMed ID: 31301525 [TBL] [Abstract][Full Text] [Related]
16. 3D mossy structures of zinc filaments: A facile strategy for superamphiphobic surface design. Zhi S; Wang G; Zeng Z; Zhu L; Liu Z; Zhang D; Xu K; Xue Q J Colloid Interface Sci; 2018 Sep; 526():106-113. PubMed ID: 29723791 [TBL] [Abstract][Full Text] [Related]
17. Super pressure-resistant superhydrophobic fabrics with real self-cleaning performance. Tian N; Chen K; Yu H; Wei J; Zhang J iScience; 2022 Jun; 25(6):104494. PubMed ID: 35721462 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of Robust Waterborne Superamphiphobic Coatings with Antifouling, Heat Insulation, and Anticorrosion. Qiao Z; Ren G; Chen X; Gao Y; Tuo Y; Lu C ACS Omega; 2023 Jan; 8(1):804-818. PubMed ID: 36643432 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional Superamphiphobic Coating Based on Fluorinated TiO Huang X; Gao X; Wang X; Shang H; Zhou S Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793270 [TBL] [Abstract][Full Text] [Related]
20. Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation. Zhang R; Wei J; Tian N; Liang W; Zhang J ACS Appl Mater Interfaces; 2022 Nov; 14(43):49047-49058. PubMed ID: 36281879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]