These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35482635)

  • 1. Quantifying the resilience of rapid transit systems: A composite index using a demand-weighted complex network model.
    Tan HE; Hong Wen Oon J; Othman NB; Legara EF; Monterola C; Ramli MA
    PLoS One; 2022; 17(4):e0267222. PubMed ID: 35482635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the dynamic resilience of Urban Rail Transit Networks during their evolution using a ridership-weighted network.
    Tian T; Liang Y; Peng Z; Cheng Y; Chen K
    PLoS One; 2023; 18(9):e0291639. PubMed ID: 37733690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Simulating Passenger Behavior for a Station Closure in a Rail Transit Network.
    Yin H; Han B; Li D; Wu J; Sun H
    PLoS One; 2016; 11(12):e0167126. PubMed ID: 27935963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of rapid rail transit system in Beijing.
    Cheng HM; Ning YZ; Ma X; Liu X; Zhang ZY
    PLoS One; 2017; 12(7):e0180075. PubMed ID: 28704376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Rail Transit on Accessibility and Spatial Equity of Public Transit: A Case Study of Guangzhou, China.
    Chen H; Yang W; Li T
    Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting the Relationship and Evolutionary Rule Connecting Residents' Travel Demand and Traffic Supply Using Multisource Data.
    Wang Z; Chen Z; Shi Y; Huang L
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach.
    Cong C; Li X; Yang S; Zhang Q; Lu L; Shi Y
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neighborhood, built environment and resilience in transportation during the COVID-19 pandemic.
    Xiao W; Wei YD; Wu Y
    Transp Res D Transp Environ; 2022 Sep; 110():103428. PubMed ID: 35975170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new global method for identifying urban rail transit key station during COVID-19: A case study of Beijing, China.
    Jia J; Chen Y; Wang Y; Li T; Li Y
    Physica A; 2021 Mar; 565():125578. PubMed ID: 35875203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing Influencing Factors of Transfer Passenger Flow of Urban Rail Transit: A New Approach Based on Nested Logit Model Considering Transfer Choices.
    Zhu Z; Zeng J; Gong X; He Y; Qiu S
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations.
    Yu L; Feng T; Li T; Cheng L
    Urban Rail Transit; 2023; 9(1):57-71. PubMed ID: 36531437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Past-Present-Future: Urban Spatial Succession and Transition of Rail Transit Station Zones in Japan.
    Zhuang X; Zhang L; Lu J
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urban commuting dynamics in response to public transit upgrades: A big data approach.
    Gao QL; Li QQ; Zhuang Y; Yue Y; Liu ZZ; Li SQ; Sui D
    PLoS One; 2019; 14(10):e0223650. PubMed ID: 31622370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring synergies between transit investment and dense redevelopment: a scenario analysis in a rapidly urbanizing landscape.
    Coxa L; Bassi A; Kolling J; Procter A; Flanders N; Tanners N; Araujo R
    Landsc Urban Plan; 2017 Nov; 167():429-440. PubMed ID: 30034064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail).
    Janić M
    Transportation (Amst); 2018; 45(4):1101-1137. PubMed ID: 30956368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization Algorithm of Urban Rail Transit Network Route Planning Using Deep Learning Technology.
    Ma Y
    Comput Intell Neurosci; 2022; 2022():2024686. PubMed ID: 35875736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the effects of light rail transit on health care costs.
    Stokes RJ; MacDonald J; Ridgeway G
    Health Place; 2008 Mar; 14(1):45-58. PubMed ID: 17543570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding and managing disaster evacuation on a transportation network.
    Lambert JH; Parlak AI; Zhou Q; Miller JS; Fontaine MD; Guterbock TM; Clements JL; Thekdi SA
    Accid Anal Prev; 2013 Jan; 50():645-58. PubMed ID: 22789430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TROLLEY Study: assessing travel, health, and equity impacts of a new light rail transit investment during the COVID-19 pandemic.
    Crist K; Benmarhnia T; Frank LD; Song D; Zunshine E; Sallis JF
    BMC Public Health; 2022 Aug; 22(1):1475. PubMed ID: 35918683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Node, place, ridership, and time model for rail-transit stations: a case study.
    Amini Pishro A; Yang Q; Zhang S; Amini Pishro M; Zhang Z; Zhao Y; Postel V; Huang D; Li W
    Sci Rep; 2022 Sep; 12(1):16120. PubMed ID: 36167963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.