These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35483007)

  • 1. Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA.
    Zheng Y; Vaissier Welborn V
    J Phys Chem B; 2022 May; 126(18):3407-3413. PubMed ID: 35483007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis.
    Jiang Y; Ding N; Shao Q; Stull SL; Cheng Z; Yang ZJ
    J Phys Chem Lett; 2023 Dec; 14(50):11480-11489. PubMed ID: 38085952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase.
    Bhowmick A; Sharma SC; Head-Gordon T
    J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Dynamics Support Electrostatic Interactions in the Active Site of Adenylate Kinase.
    Lawal MM; Vaissier Welborn V
    Chembiochem; 2022 May; 23(10):e202200097. PubMed ID: 35303385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Selectivity in Microdroplet-Mediated Enzyme Catalysis.
    Li Y; Ding J; Qin W
    J Am Chem Soc; 2024 Sep; 146(35):24389-24397. PubMed ID: 39073863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
    Frushicheva MP; Cao J; Warshel A
    Biochemistry; 2011 May; 50(18):3849-58. PubMed ID: 21443179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge Density in Enzyme Active Site as a Descriptor of Electrostatic Preorganization.
    Fuller J; Wilson TR; Eberhart ME; Alexandrova AN
    J Chem Inf Model; 2019 May; 59(5):2367-2373. PubMed ID: 30793899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
    Frushicheva MP; Cao J; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric Fields and Enzyme Catalysis.
    Fried SD; Boxer SG
    Annu Rev Biochem; 2017 Jun; 86():387-415. PubMed ID: 28375745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical nature of intermolecular interactions within cAMP-dependent protein kinase active site: differential transition state stabilization in phosphoryl transfer reaction.
    Szarek P; Dyguda-Kazimierowicz E; Tachibana A; Sokalski WA
    J Phys Chem B; 2008 Sep; 112(37):11819-26. PubMed ID: 18720966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the Transition State Stabilization/Destabilization Effects of the Electric Fields from Scaffold Residues by a QM/MM Approach.
    Yan S; Ji X; Peng W; Wang B
    J Phys Chem B; 2023 May; 127(19):4245-4253. PubMed ID: 37155960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preorganization oriented computational method for de novo design of Kemp elimination enzymes.
    Zhang S; Zhang J; Luo W; Wang P; Zhu Y
    Enzyme Microb Technol; 2022 Oct; 160():110093. PubMed ID: 35816919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.