BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35483007)

  • 1. Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA.
    Zheng Y; Vaissier Welborn V
    J Phys Chem B; 2022 May; 126(18):3407-3413. PubMed ID: 35483007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis.
    Jiang Y; Ding N; Shao Q; Stull SL; Cheng Z; Yang ZJ
    J Phys Chem Lett; 2023 Dec; 14(50):11480-11489. PubMed ID: 38085952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase.
    Bhowmick A; Sharma SC; Head-Gordon T
    J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Dynamics Support Electrostatic Interactions in the Active Site of Adenylate Kinase.
    Lawal MM; Vaissier Welborn V
    Chembiochem; 2022 May; 23(10):e202200097. PubMed ID: 35303385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
    Frushicheva MP; Cao J; Warshel A
    Biochemistry; 2011 May; 50(18):3849-58. PubMed ID: 21443179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Density in Enzyme Active Site as a Descriptor of Electrostatic Preorganization.
    Fuller J; Wilson TR; Eberhart ME; Alexandrova AN
    J Chem Inf Model; 2019 May; 59(5):2367-2373. PubMed ID: 30793899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
    Frushicheva MP; Cao J; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric Fields and Enzyme Catalysis.
    Fried SD; Boxer SG
    Annu Rev Biochem; 2017 Jun; 86():387-415. PubMed ID: 28375745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical nature of intermolecular interactions within cAMP-dependent protein kinase active site: differential transition state stabilization in phosphoryl transfer reaction.
    Szarek P; Dyguda-Kazimierowicz E; Tachibana A; Sokalski WA
    J Phys Chem B; 2008 Sep; 112(37):11819-26. PubMed ID: 18720966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the Transition State Stabilization/Destabilization Effects of the Electric Fields from Scaffold Residues by a QM/MM Approach.
    Yan S; Ji X; Peng W; Wang B
    J Phys Chem B; 2023 May; 127(19):4245-4253. PubMed ID: 37155960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A preorganization oriented computational method for de novo design of Kemp elimination enzymes.
    Zhang S; Zhang J; Luo W; Wang P; Zhu Y
    Enzyme Microb Technol; 2022 Oct; 160():110093. PubMed ID: 35816919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis.
    Fattebert JL; Lau EY; Bennion BJ; Huang P; Lightstone FC
    J Chem Theory Comput; 2015 Dec; 11(12):5688-95. PubMed ID: 26642985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.