BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35483128)

  • 1. Ruthenium-Based Photoactivated Chemotherapy.
    Bonnet S
    J Am Chem Soc; 2023 Nov; 145(43):23397-23415. PubMed ID: 37846939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. d- Versus l-Glucose Conjugation: Mitochondrial Targeting of a Light-Activated Dual-Mode-of-Action Ruthenium-Based Anticancer Prodrug.
    Lameijer LN; Hopkins SL; Brevé TG; Askes SH; Bonnet S
    Chemistry; 2016 Dec; 22(51):18484-18491. PubMed ID: 27859843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Ruthenium Nanophotocages with Red or Near-Infrared Light-Responsiveness.
    Zhang Z; He M; Wang R; Fan J; Peng X; Sun W
    Chembiochem; 2023 Dec; 24(24):e202300606. PubMed ID: 37837285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium Pyrazole Complexes: A Family of Highly Active Metallodrugs for Photoactivated Chemotherapy.
    Hirahara M; Iwamoto A; Teraoka Y; Mizuno Y; Umemura Y; Uekita T
    Inorg Chem; 2024 Jan; 63(4):1988-1996. PubMed ID: 38215027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy.
    Knoll JD; Turro C
    Coord Chem Rev; 2015 Jan; 282-283():110-126. PubMed ID: 25729089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Development of Ru(II)-Based Photoactivated Chemotherapy Agents.
    Chen Y; Bai L; Zhang P; Zhao H; Zhou Q
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A detailed density functional theory exploration of the photodissociation mechanism of ruthenium complexes for photoactivated chemotherapy.
    Belletto D; Ponte F; Mazzone G; Sicilia E
    Dalton Trans; 2024 May; 53(19):8243-8253. PubMed ID: 38654633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex.
    Sinha N; Wellauer J; Maisuradze T; Prescimone A; Kupfer S; Wenger OS
    J Am Chem Soc; 2024 Apr; 146(15):10418-10431. PubMed ID: 38588581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Designs for Phototherapeutic Transition Metal Complexes.
    Imberti C; Zhang P; Huang H; Sadler PJ
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):61-73. PubMed ID: 31310436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine.
    Farrer NJ; Salassa L; Sadler PJ
    Dalton Trans; 2009 Dec; (48):10690-701. PubMed ID: 20023896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical Properties and Structure-Activity Relationships of Ru
    Havrylyuk D; Heidary DK; Nease L; Parkin S; Glazer EC
    Eur J Inorg Chem; 2017 Mar; 2017(12):1687-1694. PubMed ID: 29200939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red-Light Activation of a Microtubule Polymerization Inhibitor via Amide Functionalization of the Ruthenium Photocage.
    Bretin L; Husiev Y; Ramu V; Zhang L; Hakkennes M; Abyar S; Johns AC; Le Dévédec SE; Betancourt T; Kornienko A; Bonnet S
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316425. PubMed ID: 38061013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical PDT Theory X: The continuing saga of ruthenium.
    Kessel D
    Photochem Photobiol; 2023 Dec; ():. PubMed ID: 38073449
    [No Abstract]   [Full Text] [Related]  

  • 14. Tricolor visible wavelength-selective photodegradable hydrogel biomaterials.
    Rapp TL; DeForest CA
    Nat Commun; 2023 Aug; 14(1):5250. PubMed ID: 37640707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototoxicity of Tridentate Ru(II) Polypyridyl Complex with Expanded Bite Angles toward Mammalian Cells and Multicellular Tumor Spheroids.
    Curley RC; Burke CS; Gkika KS; Noorani S; Walsh N; Keyes TE
    Inorg Chem; 2023 Aug; 62(32):13089-13102. PubMed ID: 37535942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium Complexes with Protic Ligands: Influence of the Position of OH Groups and π Expansion on Luminescence and Photocytotoxicity.
    Oladipupo OE; Prescott MC; Blevins ER; Gray JL; Cameron CG; Qu F; Ward NA; Pierce AL; Collinson ER; Hall JF; Park S; Kim Y; McFarland SA; Fedin I; Papish ET
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium pincer complexes for light activated toxicity: Lipophilic groups enhance toxicity.
    Sun Y; Das S; Brown SR; Blevins ER; Qu F; Ward NA; Gregory SA; Boudreaux CM; Kim Y; Papish ET
    J Inorg Biochem; 2023 Mar; 240():112110. PubMed ID: 36596265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoformulation of Lipophilic Osmium Photosensitizers in Liposomes and Micelles as a General Strategy for Improving Reproducibility and Reducing Quenching
    Papish ET
    Photochem Photobiol; 2023 Mar; 99(2):872-873. PubMed ID: 36588328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds.
    Papish ET; Oladipupo OE
    Curr Opin Chem Biol; 2022 Jun; 68():102143. PubMed ID: 35483128
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.