These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35483183)

  • 1. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment.
    Huang Y; Li X; Cao J; Wei X; Li Y; Wang Z; Cai X; Li R; Chen J
    Environ Int; 2022 Jun; 164():107258. PubMed ID: 35483183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Structure-Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles.
    Huang Y; Li X; Xu S; Zheng H; Zhang L; Chen J; Hong H; Kusko R; Li R
    Environ Health Perspect; 2020 Jun; 128(6):67010. PubMed ID: 32692251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs.
    Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B
    Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies.
    Kar S; Pathakoti K; Tchounwou PB; Leszczynska D; Leszczynski J
    Chemosphere; 2021 Feb; 264(Pt 1):128428. PubMed ID: 33022504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles.
    Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM
    J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to
    Roy J; Roy K
    Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
    Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J
    Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning.
    Yu H; Zhao Z; Cheng F
    Chemosphere; 2021 Aug; 276():130164. PubMed ID: 33725618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicological study of metal and metal oxide nanoparticles in zebrafish.
    Bai C; Tang M
    J Appl Toxicol; 2020 Jan; 40(1):37-63. PubMed ID: 31884684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.
    Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J
    Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach.
    Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J
    Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method.
    Fjodorova N; Novic M; Gajewicz A; Rasulev B
    Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish.
    Gousiadou C; Marchese Robinson RL; Kotzabasaki M; Doganis P; Wilkins TA; Jia X; Sarimveis H; Harper SL
    Nanotoxicology; 2021 May; 15(4):446-476. PubMed ID: 33586589
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Kar S; Pathakoti K; Leszczynska D; Tchounwou PB; Leszczynski J
    Nanotoxicology; 2022 Jun; 16(5):566-579. PubMed ID: 36149909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
    Li J; Wang C; Yue L; Chen F; Cao X; Wang Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles.
    Halder AK; Melo A; Cordeiro MNDS
    Chemosphere; 2020 Apr; 244():125489. PubMed ID: 31812055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation.
    Cai X; Lee A; Ji Z; Huang C; Chang CH; Wang X; Liao YP; Xia T; Li R
    Part Fibre Toxicol; 2017 Apr; 14(1):13. PubMed ID: 28431555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model.
    Shin HK; Kim KY; Park JW; No KT
    SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Nano-QSTR model to predict nano-cytotoxicity: an approach using human lung cells data.
    Meneses J; González-Durruthy M; Fernandez-de-Gortari E; Toropova AP; Toropov AA; Alfaro-Moreno E
    Part Fibre Toxicol; 2023 May; 20(1):21. PubMed ID: 37211608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.