These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35483312)

  • 21. Ornithine decarboxylase in Saccharomyces cerevisiae: chromosomal assignment and genetic mapping of the SPE1 gene.
    Xie QW; Tabor CW; Tabor H
    Yeast; 1990; 6(6):455-60. PubMed ID: 2080662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promiscuous Enzymes Cause Biosynthesis of Diverse Siderophores in Shewanella oneidensis.
    Wang S; Liang H; Liu L; Jiang X; Wu S; Gao H
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase.
    Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y
    Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyamine auxotrophs of Saccharomyces cerevisiae.
    Whitney PA; Morris DR
    J Bacteriol; 1978 Apr; 134(1):214-20. PubMed ID: 348679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical and biological characterization of siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 and its antibacterial activity.
    Wang W; Chi Z; Liu G; Buzdar MA; Chi Z; Gu Q
    Biometals; 2009 Dec; 22(6):965-72. PubMed ID: 19459055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium
    Nguyen LT; Lee EY
    Biotechnol Biofuels; 2019; 12():147. PubMed ID: 31223337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum.
    Nguyen AQ; Schneider J; Reddy GK; Wendisch VF
    Metabolites; 2015 Apr; 5(2):211-31. PubMed ID: 25919117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational engineering of ornithine decarboxylase with greater selectivity for ornithine over lysine through protein network analysis.
    Hong EY; Kim JY; Upadhyay R; Park BJ; Lee JM; Kim BG
    J Biotechnol; 2018 Sep; 281():175-182. PubMed ID: 30021117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overproduction of α-Farnesene in
    Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of an Inulinase Gene in an Oleaginous Yeast, Aureobasidium melanogenum P10, for Efficient Lipid Production from Inulin.
    Li YF; Jiang H; Hu Z; Liu GL; Chi ZM; Chi Z
    J Mol Microbiol Biotechnol; 2018; 28(4):190-200. PubMed ID: 30605900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ornithine-urea cycle involves fumaric acid biosynthesis in
    Wei X; Zhang M; Wang GY; Liu GL; Chi ZM; Chi Z
    Synth Syst Biotechnol; 2023 Mar; 8(1):33-45. PubMed ID: 36381963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH; Kwon EY; Kim YH; Hahn JS
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2737-48. PubMed ID: 26596574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycerol, trehalose and vacuoles had relations to pullulan synthesis and osmotic tolerance by the whole genome duplicated strain Aureobasidium melanogenum TN3-1 isolated from natural honey.
    Chen L; Wei X; Liu GL; Hu Z; Chi ZM; Chi Z
    Int J Biol Macromol; 2020 Dec; 165(Pt A):131-140. PubMed ID: 32987074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arginine Auxotrophy Affects Siderophore Biosynthesis and Attenuates Virulence of
    Dietl AM; Binder U; Bauer I; Shadkchan Y; Osherov N; Haas H
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32326414
    [No Abstract]   [Full Text] [Related]  

  • 37. Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase.
    Tabor CW
    Med Biol; 1981 Dec; 59(5-6):272-8. PubMed ID: 7040829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A glycosyltransferase gene responsible for pullulan biosynthesis in Aureobasidium melanogenum P16.
    Chen X; Wang QQ; Liu NN; Liu GL; Chi Z; Chi ZM
    Int J Biol Macromol; 2017 Feb; 95():539-549. PubMed ID: 27889342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the Link between Ornithine, Arginine, Polyamine and Siderophore Metabolism in Aspergillus fumigatus.
    Beckmann N; Schafferer L; Schrettl M; Binder U; Talasz H; Lindner H; Haas H
    PLoS One; 2013; 8(6):e67426. PubMed ID: 23825660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory mutations affecting ornithine decarboxylase activity in Saccharomyces cerevisiae.
    Cohn MS; Tabor CW; Tabor H
    J Bacteriol; 1980 Jun; 142(3):791-9. PubMed ID: 6991493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.