These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 35483457)

  • 1. Predicting reaction rate constants of ozone with ionic/non-ionic compounds in water.
    Zhang X; Li S; Yang Y; Zhao Y; Qu J; Li C
    Sci Total Environ; 2022 Aug; 835():155501. PubMed ID: 35483457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR modeling for the ozonation of diverse organic compounds in water.
    Huang Y; Li T; Zheng S; Fan L; Su L; Zhao Y; Xie HB; Li C
    Sci Total Environ; 2020 May; 715():136816. PubMed ID: 32014765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation.
    Cheng Z; Yang B; Chen Q; Tan Y; Gao X; Yuan T; Shen Z
    Chemosphere; 2018 Dec; 212():828-836. PubMed ID: 30193231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures.
    Li X; Zhao W; Li J; Jiang J; Chen J; Chen J
    Chemosphere; 2013 Aug; 92(8):1029-34. PubMed ID: 23601122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemical credit framework to predict the removal performance of organic chemicals of concern from water through an ozonation process.
    Pang H; Zhang J; Allinson M; Gray S; Scales PJ
    Water Res; 2023 Apr; 232():119671. PubMed ID: 36736247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Prediction Models for the Reactivity of Organic Compounds with Ozone in Aqueous Solution by Quantum Chemical Calculations: The Role of Delocalized and Localized Molecular Orbitals.
    Lee M; Zimmermann-Steffens SG; Arey JS; Fenner K; von Gunten U
    Environ Sci Technol; 2015 Aug; 49(16):9925-35. PubMed ID: 26121114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms.
    Lee M; Blum LC; Schmid E; Fenner K; von Gunten U
    Environ Sci Process Impacts; 2017 Mar; 19(3):465-476. PubMed ID: 28191571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.
    Gupta S; Basant N; Mohan D; Singh KP
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14034-46. PubMed ID: 27040550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation and deactivation of plasmid-encoded antibiotic resistance genes during exposure to ozone and chlorine.
    Yoon Y; He H; Dodd MC; Lee Y
    Water Res; 2021 Sep; 202():117408. PubMed ID: 34325102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study.
    Cheng Z; Chen Q; Pontius FW; Gao X; Tan Y; Ma Y; Shen Z
    Chemosphere; 2020 Feb; 240():124928. PubMed ID: 31563101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water.
    Garcia-Ac A; Broséus R; Vincent S; Barbeau B; Prévost M; Sauvé S
    Chemosphere; 2010 May; 79(11):1056-63. PubMed ID: 20403630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of cyanotoxin cylindrospermopsin by TiO2-assisted ozonation in water.
    Wu CC; Huang WJ; Ji BH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(11):1116-26. PubMed ID: 26191986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.
    Chen WR; Sharpless CM; Linden KG; Suffet IH
    Environ Sci Technol; 2006 Apr; 40(8):2734-9. PubMed ID: 16683616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O
    Wang H; Zhan J; Yao W; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Mar; 130():127-138. PubMed ID: 29216480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O
    Bourgin M; Borowska E; Helbing J; Hollender J; Kaiser HP; Kienle C; McArdell CS; Simon E; von Gunten U
    Water Res; 2017 Oct; 122():234-245. PubMed ID: 28601791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification.
    Sudhakaran S; Amy GL
    Water Res; 2013 Mar; 47(3):1111-22. PubMed ID: 23260175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR models for degradation of organic pollutants in ozonation process under acidic condition.
    Zhu H; Guo W; Shen Z; Tang Q; Ji W; Jia L
    Chemosphere; 2015 Jan; 119():65-71. PubMed ID: 24972172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation.
    Onstad GD; Strauch S; Meriluoto J; Codd GA; Von Gunten U
    Environ Sci Technol; 2007 Jun; 41(12):4397-404. PubMed ID: 17626442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes.
    Jin X; Peldszus S; Huck PM
    Water Res; 2012 Dec; 46(19):6519-30. PubMed ID: 23079129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance characterization and kinetic modeling of ozonation using a new method: R
    Kwon M; Kye H; Jung Y; Yoon Y; Kang JW
    Water Res; 2017 Oct; 122():172-182. PubMed ID: 28599162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.