These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35483640)

  • 21. Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide-Generating Agents Improves the Therapeutic Effects of Nanomedicines.
    Islam W; Fang J; Imamura T; Etrych T; Subr V; Ulbrich K; Maeda H
    Mol Cancer Ther; 2018 Dec; 17(12):2643-2653. PubMed ID: 30232144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological rationale for the design of polymeric anti-cancer nanomedicines.
    Zhou Y; Kopeček J
    J Drug Target; 2013 Jan; 21(1):1-26. PubMed ID: 23009337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanomedicines for the treatment of hematological malignancies.
    Deshantri AK; Varela Moreira A; Ecker V; Mandhane SN; Schiffelers RM; Buchner M; Fens MHAM
    J Control Release; 2018 Oct; 287():194-215. PubMed ID: 30165140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond.
    Maeda H
    J Control Release; 2012 Dec; 164(2):138-44. PubMed ID: 22595146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymeric nanomedicines as a promising vehicle for solid tumor therapy and targeting.
    Gupta M; Agrawal GP; Vyas SP
    Curr Mol Med; 2013 Jan; 13(1):179-204. PubMed ID: 22834834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumor targeting via EPR: Strategies to enhance patient responses.
    Golombek SK; May JN; Theek B; Appold L; Drude N; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2018 May; 130():17-38. PubMed ID: 30009886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticles containing insoluble drug for cancer therapy.
    Guo S; Huang L
    Biotechnol Adv; 2014; 32(4):778-88. PubMed ID: 24113214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy--Problems, Solutions, and Prospects.
    Maeda H; Tsukigawa K; Fang J
    Microcirculation; 2016 Apr; 23(3):173-82. PubMed ID: 26237291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link?
    Taurin S; Nehoff H; Greish K
    J Control Release; 2012 Dec; 164(3):265-75. PubMed ID: 22800576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls.
    Nakamura H; Fang J; Maeda H
    Expert Opin Drug Deliv; 2015 Jan; 12(1):53-64. PubMed ID: 25425260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective.
    Shekhar S; Chauhan M; Sonali ; Yadav B; Dutt R; Hu L; Muthu MS; Singh RP
    Nanomedicine (Lond); 2022 Aug; 17(18):1213-1216. PubMed ID: 36136592
    [No Abstract]   [Full Text] [Related]  

  • 33. Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles.
    Biancacci I; De Lorenzi F; Theek B; Bai X; May JN; Consolino L; Baues M; Moeckel D; Gremse F; von Stillfried S; El Shafei A; Benderski K; Azadkhah Shalmani A; Wang A; Momoh J; Peña Q; Buhl EM; Buyel J; Hennink W; Kiessling F; Metselaar J; Shi Y; Lammers T
    Adv Sci (Weinh); 2022 Apr; 9(10):e2103745. PubMed ID: 35072358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.
    Prabhakar U; Maeda H; Jain RK; Sevick-Muraca EM; Zamboni W; Farokhzad OC; Barry ST; Gabizon A; Grodzinski P; Blakey DC
    Cancer Res; 2013 Apr; 73(8):2412-7. PubMed ID: 23423979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect.
    Goos JACM; Cho A; Carter LM; Dilling TR; Davydova M; Mandleywala K; Puttick S; Gupta A; Price WS; Quinn JF; Whittaker MR; Lewis JS; Davis TP
    Theranostics; 2020; 10(2):567-584. PubMed ID: 31903138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomedicines in Diagnosis and Treatment of Cancer: An Update.
    Haider N; Fatima S; Taha M; Rizwanullah M; Firdous J; Ahmad R; Mazhar F; Khan MA
    Curr Pharm Des; 2020; 26(11):1216-1231. PubMed ID: 32188379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines.
    Dawidczyk CM; Kim C; Park JH; Russell LM; Lee KH; Pomper MG; Searson PC
    J Control Release; 2014 Aug; 187():133-44. PubMed ID: 24874289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tumor Targeting of Polymeric Nanoparticles Conjugated with Peptides, Saccharides, and Small Molecules for Anticancer Drugs.
    Bayram B; Ozgur A; Tutar L; Tutar Y
    Curr Pharm Des; 2017; 23(35):5349-5357. PubMed ID: 28911307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor-targeted nanomedicines for cancer theranostics.
    Arranja AG; Pathak V; Lammers T; Shi Y
    Pharmacol Res; 2017 Jan; 115():87-95. PubMed ID: 27865762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.