These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35483706)

  • 1. Towards automated in vivo parcellation of the human cerebral cortex using supervised classification of magnetic resonance fingerprinting residuals.
    Moinian S; Vegh V; Reutens D
    Cereb Cortex; 2023 Feb; 33(5):1550-1565. PubMed ID: 35483706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance fingerprinting residual signals can disassociate human grey matter regions.
    Moinian S; Vegh V; O'Brien K; Reutens D
    Brain Struct Funct; 2022 Jan; 227(1):313-329. PubMed ID: 34697684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
    Zhang Y; Liu S
    Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex.
    Li Y; Liu A; Fu X; Mckeown MJ; Wang ZJ; Chen X
    Comput Biol Med; 2022 Nov; 150():106078. PubMed ID: 36155266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinally consistent registration and parcellation of cortical surfaces using semi-supervised learning.
    Zhao F; Wu Z; Wang L; Lin W; Li G
    Med Image Anal; 2024 Aug; 96():103193. PubMed ID: 38823362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study.
    Vidić I; Egnell L; Jerome NP; Teruel JR; Sjøbakk TE; Østlie A; Fjøsne HE; Bathen TF; Goa PE
    J Magn Reson Imaging; 2018 May; 47(5):1205-1216. PubMed ID: 29044896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.
    Song S; Zhan Z; Long Z; Zhang J; Yao L
    PLoS One; 2011 Feb; 6(2):e17191. PubMed ID: 21359184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated individual cortical parcellation via consensus graph representation learning.
    Wen X; Yang M; Qi S; Wu X; Zhang D
    Neuroimage; 2024 Jun; 293():120616. PubMed ID: 38697587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group-wise consistent cortical parcellation based on connectional profiles.
    Zhang T; Zhu D; Jiang X; Zhang S; Kou Z; Guo L; Liu T
    Med Image Anal; 2016 Aug; 32():32-45. PubMed ID: 27054276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
    Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T
    Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface.
    Li G; Wang L; Lin W; Shen D
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():66-74. PubMed ID: 29124254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing thalamic and basal ganglia nuclei in medically intractable focal epilepsy by MR fingerprinting.
    Tang Y; Su TY; Choi JY; Hu S; Wang X; Sakaie K; Murakami H; Alexopoulos A; Griswold M; Jones S; Najm I; Ma D; Wang ZI
    Epilepsia; 2022 Aug; 63(8):1998-2010. PubMed ID: 35661353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer.
    Al-Azzam N; Shatnawi I
    Ann Med Surg (Lond); 2021 Feb; 62():53-64. PubMed ID: 33489117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extreme learning machine-based classification of ADHD using brain structural MRI data.
    Peng X; Lin P; Zhang T; Wang J
    PLoS One; 2013; 8(11):e79476. PubMed ID: 24260229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.
    Sørensen L; Nielsen M;
    J Neurosci Methods; 2018 May; 302():66-74. PubMed ID: 29378218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T
    Rieger B; Zimmer F; Zapp J; Weingärtner S; Schad LR
    Magn Reson Med; 2017 Nov; 78(5):1724-1733. PubMed ID: 27981641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex.
    Doyen S; Nicholas P; Poologaindran A; Crawford L; Young IM; Romero-Garcia R; Sughrue ME
    Hum Brain Mapp; 2022 Mar; 43(4):1358-1369. PubMed ID: 34826179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.