BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35483831)

  • 1. Cryogenic grinding of cotton fiber cellulose: The effect on physicochemical properties.
    Shamshina JL; Acharya S; Rumi SS; Liyanage S; Parajuli P; Abidi N
    Carbohydr Polym; 2022 Aug; 289():119408. PubMed ID: 35483831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.
    Nam S; French AD; Condon BD; Concha M
    Carbohydr Polym; 2016 Jan; 135():1-9. PubMed ID: 26453844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Microwave Plasma Pre-Treatment on Cotton Cellulose Dissolution.
    Rumi SS; Liyanage S; Shamshina JL; Abidi N
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Particle Size on the Kinetics of Enzymatic Hydrolysis of Microcrystalline Cotton Cellulose: a Modeling and Simulation Study.
    Gaikwad A
    Appl Biochem Biotechnol; 2019 Mar; 187(3):800-816. PubMed ID: 30084003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.
    Palme A; Theliander H; Brelid H
    Carbohydr Polym; 2016 Jan; 136():1281-7. PubMed ID: 26572472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new cellulose purification approach for higher degree of polymerization: Modeling, optimization and characterization.
    Hivechi A; Bahrami SH
    Carbohydr Polym; 2016 Nov; 152():280-286. PubMed ID: 27516274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and physicochemical characteristics of cotton fibers during combing process.
    Shi Y; Geng L; Fan P; Yuan Y; Zhao J; Zhang Y
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129791. PubMed ID: 38325253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and surface properties of fibrous and ground cellulosic substrates.
    Csiszár E; Fekete E
    Langmuir; 2011 Jul; 27(13):8444-50. PubMed ID: 21657257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: Formation mechanism of disordered regions along each cellulose microfibril.
    Funahashi R; Ono Y; Tanaka R; Yokoi M; Daido K; Inamochi T; Saito T; Horikawa Y; Isogai A
    Int J Biol Macromol; 2018 Apr; 109():914-920. PubMed ID: 29146560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization.
    Shlieout G; Arnold K; Müller G
    AAPS PharmSciTech; 2002; 3(2):E11. PubMed ID: 12916948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis behavior of regenerated celluloses with different degree of polymerization under microwave radiation.
    Ni J; Teng N; Chen H; Wang J; Zhu J; Na H
    Bioresour Technol; 2015 Sep; 191():229-33. PubMed ID: 25997012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers.
    Zhang L; Li X; Zhang S; Gao Q; Lu Q; Peng R; Xu P; Shang H; Yuan Y; Zou H
    Anal Bioanal Chem; 2021 Feb; 413(5):1313-1320. PubMed ID: 33404744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose.
    Mattonai M; Pawcenis D; Del Seppia S; Łojewska J; Ribechini E
    Bioresour Technol; 2018 Dec; 270():270-277. PubMed ID: 30223158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear Correlation between True Density and Crystallinity of Regenerated and Mercerized Celluloses.
    Daicho K; Fujisawa S; Saito T
    Biomacromolecules; 2023 Feb; 24(2):661-666. PubMed ID: 36583854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of the ribbon-like cellulose nanocrystals by the cellulase enzymolysis of cotton pulp fibers.
    Chen XQ; Pang GX; Shen WH; Tong X; Jia MY
    Carbohydr Polym; 2019 Mar; 207():713-719. PubMed ID: 30600057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharification of native and degraded cotton cellulose and commercial microcrystalline cellulose by Trichoderma viride cellobiohydrolase I.
    Finetti M; Daz M; Ellenrieder G; Marx-Figini M
    World J Microbiol Biotechnol; 1993 Mar; 9(2):251-4. PubMed ID: 24419959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na-cellulose formation in a single cotton fiber studied by synchrotron radiation microdiffraction.
    Schoeck J; Davies RJ; Martel A; Riekel C
    Biomacromolecules; 2007 Feb; 8(2):602-10. PubMed ID: 17256987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction and characterization of nanocellulose structures from raw cotton linter.
    Morais JP; Rosa Mde F; de Souza Filho Mde S; Nascimento LD; do Nascimento DM; Cassales AR
    Carbohydr Polym; 2013 Jan; 91(1):229-35. PubMed ID: 23044127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.