These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application. Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052 [TBL] [Abstract][Full Text] [Related]
3. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. Gong Z; Zhang G; Zeng X; Li J; Li G; Huang W; Sun R; Wong C ACS Appl Mater Interfaces; 2016 Sep; 8(36):24030-7. PubMed ID: 27548327 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly(acrylic acid). Li B; Zhang Y; Wu C; Guo B; Luo Z Carbohydr Polym; 2018 Oct; 198():1-8. PubMed ID: 30092978 [TBL] [Abstract][Full Text] [Related]
5. Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing. Chen T; Chen Y; Rehman HU; Chen Z; Yang Z; Wang M; Li H; Liu H ACS Appl Mater Interfaces; 2018 Oct; 10(39):33523-33531. PubMed ID: 30204399 [TBL] [Abstract][Full Text] [Related]
6. A Dual Cross-Linked Strategy to Construct Moldable Hydrogels with High Stretchability, Good Self-Recovery, and Self-Healing Capability. Qin Y; Wang J; Qiu C; Xu X; Jin Z J Agric Food Chem; 2019 Apr; 67(14):3966-3980. PubMed ID: 30888158 [TBL] [Abstract][Full Text] [Related]
7. Dual Cross-Linked Starch-Borax Double Network Hydrogels with Tough and Self-Healing Properties. Chen X; Ji N; Li F; Qin Y; Wang Y; Xiong L; Sun Q Foods; 2022 Apr; 11(9):. PubMed ID: 35564038 [TBL] [Abstract][Full Text] [Related]
8. Swelling induced mechanically tough starch-agar based hydrogel as a control release drug vehicle for wound dressing applications. Sarmah D; Borah M; Mandal M; Karak N J Mater Chem B; 2023 Mar; 11(13):2927-2936. PubMed ID: 36912351 [TBL] [Abstract][Full Text] [Related]
9. Tough, stretchable and compressive alginate-based hydrogels achieved by non-covalent interactions. Jing Z; Dai X; Xian X; Du X; Liao M; Hong P; Li Y RSC Adv; 2020 Jun; 10(40):23592-23606. PubMed ID: 35517309 [TBL] [Abstract][Full Text] [Related]
10. Dual Physically Cross-Linked Double Network Hydrogels with High Mechanical Strength, Fatigue Resistance, Notch-Insensitivity, and Self-Healing Properties. Yuan N; Xu L; Wang H; Fu Y; Zhang Z; Liu L; Wang C; Zhao J; Rong J ACS Appl Mater Interfaces; 2016 Dec; 8(49):34034-34044. PubMed ID: 27960423 [TBL] [Abstract][Full Text] [Related]
11. A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Hua D; Gao S; Zhang M; Ma W; Huang C Carbohydr Polym; 2020 Nov; 247():116743. PubMed ID: 32829862 [TBL] [Abstract][Full Text] [Related]
12. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Fang J; Li P; Lu X; Fang L; Lü X; Ren F Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515 [TBL] [Abstract][Full Text] [Related]
13. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. Liang Y; Ye L; Sun X; Lv Q; Liang H ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185 [TBL] [Abstract][Full Text] [Related]
14. A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. Chen H; Yang F; Hu R; Zhang M; Ren B; Gong X; Ma J; Jiang B; Chen Q; Zheng J J Mater Chem B; 2016 Sep; 4(35):5814-5824. PubMed ID: 32263754 [TBL] [Abstract][Full Text] [Related]
15. Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels. Rumon MMH; Sarkar SD; Uddin MM; Alam MM; Karobi SN; Ayfar A; Azam MS; Roy CK RSC Adv; 2022 Mar; 12(12):7453-7463. PubMed ID: 35424695 [TBL] [Abstract][Full Text] [Related]
16. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor. Wang T; Ren X; Bai Y; Liu L; Wu G Carbohydr Polym; 2021 Feb; 254():117298. PubMed ID: 33357866 [TBL] [Abstract][Full Text] [Related]
17. Dopamine/zinc oxide doped poly( Sun F; Li R; Jin F; Zhang H; Zhang J; Wang T; Feng ZQ J Mater Chem B; 2021 Jul; 9(27):5492-5502. PubMed ID: 34161410 [TBL] [Abstract][Full Text] [Related]
18. Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure. Sabzi M; Samadi N; Abbasi F; Mahdavinia GR; Babaahmadi M Mater Sci Eng C Mater Biol Appl; 2017 May; 74():374-381. PubMed ID: 28254307 [TBL] [Abstract][Full Text] [Related]
19. Tough, Self-Recoverable, Spiropyran (SP3) Bearing Polymer Beads Incorporated PAM Hydrogels with Sole Mechanochromic Behavior. Xu J; Luo Y; Chen Y; Guo Z; Zhang Y; Xie S; Li N; Xu L Gels; 2022 Mar; 8(4):. PubMed ID: 35448109 [TBL] [Abstract][Full Text] [Related]
20. A short linear glucan nanocomposite hydrogel formed by in situ self-assembly with highly elastic, fatigue-resistant and self-recovery. Zou J; Lin Z; Zhan L; Qin Y; Sun Q; Ji N; Xie F Carbohydr Polym; 2024 Sep; 340():122241. PubMed ID: 38858016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]