These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35484169)

  • 1. Controlling synchronization of gamma oscillations by astrocytic modulation in a model hippocampal neural network.
    Makovkin S; Kozinov E; Ivanchenko M; Gordleeva S
    Sci Rep; 2022 Apr; 12(1):6970. PubMed ID: 35484169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks.
    Perea G; Gómez R; Mederos S; Covelo A; Ballesteros JJ; Schlosser L; Hernández-Vivanco A; Martín-Fernández M; Quintana R; Rayan A; Díez A; Fuenzalida M; Agarwal A; Bergles DE; Bettler B; Manahan-Vaughan D; Martín ED; Kirchhoff F; Araque A
    Elife; 2016 Dec; 5():. PubMed ID: 28012274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.
    Andersson R; Johnston A; Fisahn A
    PLoS One; 2012; 7(7):e40906. PubMed ID: 22815864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
    Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA
    J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
    Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO
    J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CAN-In network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus.
    Giovannini F; Knauer B; Yoshida M; Buhry L
    Hippocampus; 2017 Apr; 27(4):450-463. PubMed ID: 28052448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.
    Oren I; Mann EO; Paulsen O; Hájos N
    J Neurosci; 2006 Sep; 26(39):9923-34. PubMed ID: 17005856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect.
    Wallenstein GV; Hasselmo ME
    J Neurophysiol; 1997 Jul; 78(1):393-408. PubMed ID: 9242288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin.
    Kohus Z; Káli S; Rovira-Esteban L; Schlingloff D; Papp O; Freund TF; Hájos N; Gulyás AI
    J Physiol; 2016 Jul; 594(13):3745-74. PubMed ID: 27038232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling fast and slow gamma oscillations with interneurons of different subtype.
    Keeley S; Fenton AA; Rinzel J
    J Neurophysiol; 2017 Mar; 117(3):950-965. PubMed ID: 27927782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balanced synaptic currents underlie low-frequency oscillations in the subiculum.
    Royzen F; Williams S; Fernandez FR; White JA
    Hippocampus; 2019 Dec; 29(12):1178-1189. PubMed ID: 31301195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.
    Donoso JR; Schmitz D; Maier N; Kempter R
    J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant Interneurons Can Increase Robustness of Gamma Oscillations.
    Tikidji-Hamburyan RA; Martínez JJ; White JA; Canavier CC
    J Neurosci; 2015 Nov; 35(47):15682-95. PubMed ID: 26609160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates.
    Vida I; Bartos M; Jonas P
    Neuron; 2006 Jan; 49(1):107-17. PubMed ID: 16387643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism for generation of long-range synchronous fast oscillations in the cortex.
    Traub RD; Whittington MA; Stanford IM; Jefferys JG
    Nature; 1996 Oct; 383(6601):621-4. PubMed ID: 8857537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory control of intrinsic hippocampal oscillations?
    Fischer Y; Dürr R
    Brain Res; 2003 Aug; 982(1):79-91. PubMed ID: 12915242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of gamma rhythms in networks of interneurons and pyramidal cells.
    Traub RD; Jefferys JG; Whittington MA
    J Comput Neurosci; 1997 Apr; 4(2):141-50. PubMed ID: 9154520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.
    Tukker JJ; Fuentealba P; Hartwich K; Somogyi P; Klausberger T
    J Neurosci; 2007 Aug; 27(31):8184-9. PubMed ID: 17670965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.