These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 35484184)
1. Development of biodegradable films using sunflower protein isolates and bacterial nanocellulose as innovative food packaging materials for fresh fruit preservation. Efthymiou MN; Tsouko E; Papagiannopoulos A; Athanasoulia IG; Georgiadou M; Pispas S; Briassoulis D; Tsironi T; Koutinas A Sci Rep; 2022 Apr; 12(1):6935. PubMed ID: 35484184 [TBL] [Abstract][Full Text] [Related]
2. Influence of Nanocellulose Additive on the Film Properties of Native Rice Starch-based Edible Films for Food Packaging. Jeevahan J; Chandrasekaran M Recent Pat Nanotechnol; 2019; 13(3):222-233. PubMed ID: 31553298 [TBL] [Abstract][Full Text] [Related]
3. Sunflower oil preservation by using chickpea flour film as bio-packaging material. Camiletti OF; Riveros CG; Aguirre A; Grosso NR J Food Sci; 2021 Jan; 86(1):61-67. PubMed ID: 33336405 [TBL] [Abstract][Full Text] [Related]
4. Development of a layered bacterial nanocellulose-PHBV composite for food packaging. A G Soares da Silva F; Matos M; Dourado F; A M Reis M; C Branco P; Poças F; Gama M J Sci Food Agric; 2023 Feb; 103(3):1077-1087. PubMed ID: 35218225 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial films made with persimmon (Diospyros kaki L.), pectin, and glycerol: An experimental design approach. Matheus JRV; Nogueira TBB; Pereira APA; Correia TR; de Sousa AMF; Pastore GM; Pelissari FM; Miyahira RF; Fai AEC J Food Sci; 2021 Oct; 86(10):4539-4553. PubMed ID: 34431096 [TBL] [Abstract][Full Text] [Related]
6. Characterization of nanocellulose and activated carbon nanocomposite films' biosensing properties for smart packaging. Sobhan A; Muthukumarappan K; Cen Z; Wei L Carbohydr Polym; 2019 Dec; 225():115189. PubMed ID: 31521300 [TBL] [Abstract][Full Text] [Related]
7. Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach. Papadaki A; Manikas AC; Papazoglou E; Kachrimanidou V; Lappa I; Galiotis C; Mandala I; Kopsahelis N Food Chem; 2022 Aug; 385():132604. PubMed ID: 35303655 [TBL] [Abstract][Full Text] [Related]
8. Pedalium murex plant-based bioplasticizer reinforced polylactic acid films: A promising approach for biodegradable fruit packaging applications. Sunesh NP; Suyambulingam I; Divakaran D; Pulikkalparambil H; Sanjay MR; Siengchin S Int J Biol Macromol; 2024 Jun; 270(Pt 1):132392. PubMed ID: 38754681 [TBL] [Abstract][Full Text] [Related]
9. Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films. Chang C; Nickerson MT Food Sci Technol Int; 2015 Jan; 21(1):33-44. PubMed ID: 24072788 [TBL] [Abstract][Full Text] [Related]
10. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films. Yang Y; Liu H; Wu M; Ma J; Lu P Int J Biol Macromol; 2020 Oct; 161():627-635. PubMed ID: 32535206 [TBL] [Abstract][Full Text] [Related]
11. Corncob-derived biodegradable packaging films: A sustainable solution for raspberry post-harvest preservation. Paudel S; Janaswamy S Food Chem; 2024 Oct; 454():139749. PubMed ID: 38797104 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans. Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748 [TBL] [Abstract][Full Text] [Related]
13. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. El Halal SL; Colussi R; Biduski B; Evangelho JA; Bruni GP; Antunes MD; Dias AR; Zavareze ED J Sci Food Agric; 2017 Jan; 97(2):411-419. PubMed ID: 27106744 [TBL] [Abstract][Full Text] [Related]
14. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. Leite LSF; Bilatto S; Paschoalin RT; Soares AC; Moreira FKV; Oliveira ON; Mattoso LHC; Bras J Int J Biol Macromol; 2020 Dec; 165(Pt B):2974-2983. PubMed ID: 33122067 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Noorbakhsh-Soltani SM; Zerafat MM; Sabbaghi S Carbohydr Polym; 2018 Jun; 189():48-55. PubMed ID: 29580425 [TBL] [Abstract][Full Text] [Related]
16. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Reddy JP; Rhim JW Carbohydr Polym; 2014 Sep; 110():480-8. PubMed ID: 24906782 [TBL] [Abstract][Full Text] [Related]
17. Active natural-based films for food packaging applications: The combined effect of chitosan and nanocellulose. Costa SM; Ferreira DP; Teixeira P; Ballesteros LF; Teixeira JA; Fangueiro R Int J Biol Macromol; 2021 Apr; 177():241-251. PubMed ID: 33631258 [TBL] [Abstract][Full Text] [Related]
18. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548 [TBL] [Abstract][Full Text] [Related]
19. Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Qazanfarzadeh Z; Kadivar M Int J Biol Macromol; 2016 Oct; 91():1134-40. PubMed ID: 27349890 [TBL] [Abstract][Full Text] [Related]