These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 35484476)
41. Conversion efficiency of skutterudite-based thermoelectric modules. Salvador JR; Cho JY; Ye Z; Moczygemba JE; Thompson AJ; Sharp JW; Koenig JD; Maloney R; Thompson T; Sakamoto J; Wang H; Wereszczak AA Phys Chem Chem Phys; 2014 Jun; 16(24):12510-20. PubMed ID: 24830880 [TBL] [Abstract][Full Text] [Related]
42. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Zhao LD; Lo SH; Zhang Y; Sun H; Tan G; Uher C; Wolverton C; Dravid VP; Kanatzidis MG Nature; 2014 Apr; 508(7496):373-7. PubMed ID: 24740068 [TBL] [Abstract][Full Text] [Related]
43. Localized Vibrations of Bi Bilayer Leading to Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Weak Topological Insulator n-Type BiSe. Samanta M; Pal K; Pal P; Waghmare UV; Biswas K J Am Chem Soc; 2018 May; 140(17):5866-5872. PubMed ID: 29641193 [TBL] [Abstract][Full Text] [Related]
44. Thermoelectric efficiency of (1 - x)(GeTe) x(Bi2Se0.2Te2.8) and implementation into highly performing thermoelectric power generators. Koenig J; Winkler M; Dankwort T; Hansen AL; Pernau HF; Duppel V; Jaegle M; Bartholomé K; Kienle L; Bensch W Dalton Trans; 2015 Feb; 44(6):2835-43. PubMed ID: 25559337 [TBL] [Abstract][Full Text] [Related]
45. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652 [TBL] [Abstract][Full Text] [Related]
46. Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics. Mori T Small; 2017 Dec; 13(45):. PubMed ID: 28961360 [TBL] [Abstract][Full Text] [Related]
47. Screening strategy for developing thermoelectric interface materials. Xie L; Yin L; Yu Y; Peng G; Song S; Ying P; Cai S; Sun Y; Shi W; Wu H; Qu N; Guo F; Cai W; Wu H; Zhang Q; Nielsch K; Ren Z; Liu Z; Sui J Science; 2023 Nov; 382(6673):921-928. PubMed ID: 37995213 [TBL] [Abstract][Full Text] [Related]
48. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. Xing T; Zhu C; Song Q; Huang H; Xiao J; Ren D; Shi M; Qiu P; Shi X; Xu F; Chen L Adv Mater; 2021 Apr; 33(17):e2008773. PubMed ID: 33760288 [TBL] [Abstract][Full Text] [Related]
49. Printing thermoelectric inks toward next-generation energy and thermal devices. Zeng M; Zavanelli D; Chen J; Saeidi-Javash M; Du Y; LeBlanc S; Snyder GJ; Zhang Y Chem Soc Rev; 2022 Jan; 51(2):485-512. PubMed ID: 34761784 [TBL] [Abstract][Full Text] [Related]
50. Ductile Ag Yang S; Gao Z; Qiu P; Liang J; Wei TR; Deng T; Xiao J; Shi X; Chen L Adv Mater; 2021 Mar; 33(10):e2007681. PubMed ID: 33543550 [TBL] [Abstract][Full Text] [Related]
51. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. Kovalenko MV; Spokoyny B; Lee JS; Scheele M; Weber A; Perera S; Landry D; Talapin DV J Am Chem Soc; 2010 May; 132(19):6686-95. PubMed ID: 20423085 [TBL] [Abstract][Full Text] [Related]
52. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508 [TBL] [Abstract][Full Text] [Related]
53. Improvement of Low-Temperature zT in a Mg Wood M; Kuo JJ; Imasato K; Snyder GJ Adv Mater; 2019 Aug; 31(35):e1902337. PubMed ID: 31273874 [TBL] [Abstract][Full Text] [Related]
54. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Bubnova O; Khan ZU; Malti A; Braun S; Fahlman M; Berggren M; Crispin X Nat Mater; 2011 Jun; 10(6):429-33. PubMed ID: 21532583 [TBL] [Abstract][Full Text] [Related]
55. Microturbine and Thermoelectric Generator Combined System: A Case Study. Miozzo A; Boldrini S; Ferrario A; Fabrizio M J Nanosci Nanotechnol; 2017 Mar; 17(3):1601-607. PubMed ID: 29693978 [TBL] [Abstract][Full Text] [Related]
56. Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators. Kang HB; Saparamadu U; Nozariasbmarz A; Li W; Zhu H; Poudel B; Priya S ACS Appl Mater Interfaces; 2020 Aug; 12(32):36706-36714. PubMed ID: 32672927 [TBL] [Abstract][Full Text] [Related]
57. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe) Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062 [TBL] [Abstract][Full Text] [Related]
58. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems. Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031 [TBL] [Abstract][Full Text] [Related]
59. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Wu HJ; Zhao LD; Zheng FS; Wu D; Pei YL; Tong X; Kanatzidis MG; He JQ Nat Commun; 2014 Jul; 5():4515. PubMed ID: 25072798 [TBL] [Abstract][Full Text] [Related]
60. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Bu Z; Zhang X; Hu Y; Chen Z; Lin S; Li W; Xiao C; Pei Y Nat Commun; 2022 Jan; 13(1):237. PubMed ID: 35017505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]