These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 35484501)
1. Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer. Bhadra T; Mallik S; Hasan N; Zhao Z BMC Bioinformatics; 2022 Apr; 23(Suppl 3):153. PubMed ID: 35484501 [TBL] [Abstract][Full Text] [Related]
2. Unsupervised Feature Selection Using an Integrated Strategy of Hierarchical Clustering With Singular Value Decomposition: An Integrative Biomarker Discovery Method With Application to Acute Myeloid Leukemia. Bhadra T; Mallik S; Sohel A; Zhao Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1354-1364. PubMed ID: 34495838 [TBL] [Abstract][Full Text] [Related]
3. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801 [TBL] [Abstract][Full Text] [Related]
4. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines. Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352 [TBL] [Abstract][Full Text] [Related]
5. Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers. Martin-Hernandez R; Espeso-Gil S; Domingo C; Latorre P; Hervas S; Hernandez Mora JR; Kotelnikova E Front Mol Biosci; 2023; 10():1258902. PubMed ID: 38028548 [No Abstract] [Full Text] [Related]
6. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. Shi P; Ray S; Zhu Q; Kon MA BMC Bioinformatics; 2011 Sep; 12():375. PubMed ID: 21939564 [TBL] [Abstract][Full Text] [Related]
7. Supervised Relevance-Redundancy assessments for feature selection in omics-based classification scenarios. Cascianelli S; Galzerano A; Masseroli M J Biomed Inform; 2023 Aug; 144():104457. PubMed ID: 37488024 [TBL] [Abstract][Full Text] [Related]
8. Benchmark study of feature selection strategies for multi-omics data. Li Y; Mansmann U; Du S; Hornung R BMC Bioinformatics; 2022 Oct; 23(1):412. PubMed ID: 36199022 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture. Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887 [TBL] [Abstract][Full Text] [Related]
10. Two-stage feature selection for classification of gene expression data based on an improved Salp Swarm Algorithm. Qin X; Zhang S; Yin D; Chen D; Dong X Math Biosci Eng; 2022 Sep; 19(12):13747-13781. PubMed ID: 36654066 [TBL] [Abstract][Full Text] [Related]
11. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification. Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884 [TBL] [Abstract][Full Text] [Related]
12. Supervised, Unsupervised, and Semi-Supervised Feature Selection: A Review on Gene Selection. Ang JC; Mirzal A; Haron H; Hamed HN IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):971-989. PubMed ID: 26390495 [TBL] [Abstract][Full Text] [Related]
13. Feature set optimization in biomarker discovery from genome-scale data. Fortino V; Scala G; Greco D Bioinformatics; 2020 Jun; 36(11):3393-3400. PubMed ID: 32119073 [TBL] [Abstract][Full Text] [Related]
14. TSG: a new algorithm for binary and multi-class cancer classification and informative genes selection. Wang H; Zhang H; Dai Z; Chen MS; Yuan Z BMC Med Genomics; 2013; 6 Suppl 1(Suppl 1):S3. PubMed ID: 23445528 [TBL] [Abstract][Full Text] [Related]
15. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. Zhang Y; Deng Q; Liang W; Zou X Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989 [TBL] [Abstract][Full Text] [Related]
16. An entropy-based gene selection method for cancer classification using microarray data. Liu X; Krishnan A; Mondry A BMC Bioinformatics; 2005 Mar; 6():76. PubMed ID: 15790388 [TBL] [Abstract][Full Text] [Related]
17. 3PNMF-MKL: A non-negative matrix factorization-based multiple kernel learning method for multi-modal data integration and its application to gene signature detection. Mallik S; Sarkar A; Nath S; Maulik U; Das S; Pati SK; Ghosh S; Zhao Z Front Genet; 2023; 14():1095330. PubMed ID: 36865387 [TBL] [Abstract][Full Text] [Related]
18. Robust biomarker discovery for hepatocellular carcinoma from high-throughput data by multiple feature selection methods. Zhang Z; Liu ZP BMC Med Genomics; 2021 Aug; 14(Suppl 1):112. PubMed ID: 34433487 [TBL] [Abstract][Full Text] [Related]
19. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
20. Optimizing prognostic factors of five-year survival in gastric cancer patients using feature selection techniques with machine learning algorithms: a comparative study. Afrash MR; Mirbagheri E; Mashoufi M; Kazemi-Arpanahi H BMC Med Inform Decis Mak; 2023 Apr; 23(1):54. PubMed ID: 37024885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]