These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35484751)

  • 1. Study on the Collection Efficiency of Bioaerosol Nanoparticles by Andersen-Type Impactors.
    Tian Y; Wu Y; Zhang G; Chen H; Wu D; Liu J; Li Y; Shen S; Feng D; Pan Y; Li J
    J Biomed Nanotechnol; 2022 Feb; 18(2):319-326. PubMed ID: 35484751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method.
    Xu Z; Yao M
    Environ Monit Assess; 2013 May; 185(5):3993-4003. PubMed ID: 22955887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition and Distribution Analysis of Bioaerosols Under Different Environmental Conditions.
    Wang Z; Li J; Qian L; Liu L; Qian J; Lu B; Guo Z
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing bioaerosol sampling by Andersen impactors using mineral-oil-spread agar plate.
    Xu Z; Wei K; Wu Y; Shen F; Chen Q; Li M; Yao M
    PLoS One; 2013; 8(2):e56896. PubMed ID: 23460818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaerosol sampling by a personal rotating cup sampler CIP 10-M.
    Görner P; Fabriès JF; Duquenne P; Witschger O; Wrobel R
    J Environ Monit; 2006 Jan; 8(1):43-8. PubMed ID: 16395458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler.
    Lee CH; Seok H; Jang W; Kim JT; Park G; Kim HU; Rho J; Kim T; Chung TD
    Biosens Bioelectron; 2021 Nov; 192():113499. PubMed ID: 34311208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Three-Stage Bioaerosol Sampler for Size-Selective Sampling.
    Lim JH; Nam SH; Kim J; Kim NH; Park GS; Maeng JS; Yook SJ
    J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 35013744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols.
    Liao L; Byeon JH; Park JH
    Environ Res; 2021 Mar; 194():110615. PubMed ID: 33309960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique.
    Paton S; Clark S; Spencer A; Garratt I; Dinesh I; Thompson KA; Bennett A; Pottage T
    Viruses; 2022 Mar; 14(3):. PubMed ID: 35337046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing Silica Nanoparticles in the Study of the Airborne Transmission of SARS-CoV-2.
    Hildebrandt R; Skubacz K; Chmielewska I; Dyduch Z; Zgórska A; Smoliński A
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-volume sampler for size-selective sampling of bioaerosols including viruses.
    Lim JH; Nam SH; Kim J; Kim NH; Park GS; Maeng JS; Yook SJ
    Atmos Environ (1994); 2021 Nov; 265():118720. PubMed ID: 34539212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols.
    Zhou X; Liu X; Zhao H; Guo G; Jiang X; Liu S; Sun X; Yang H
    Mikrochim Acta; 2024 Feb; 191(3):132. PubMed ID: 38351367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SARS-CoV-2 detection in bioaerosols using a liquid impinger collector and ddPCR.
    Truyols Vives J; Muncunill J; Toledo Pons N; Baldoví HG; Sala Llinàs E; Mercader Barceló J
    Indoor Air; 2022 Feb; 32(2):e13002. PubMed ID: 35225399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformative Approach To Investigate the Microphysical Factors Influencing Airborne Transmission of Pathogens.
    Otero Fernandez M; Thomas RJ; Oswin H; Haddrell AE; Reid JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimum Sizes of Respiratory Particles Carrying SARS-CoV-2 and the Possibility of Aerosol Generation.
    Lee BU
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32977575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.
    Park JW; Kim HR; Hwang J
    Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets.
    Bekking C; Yip L; Groulx N; Doggett N; Finn M; Mubareka S
    Influenza Other Respir Viruses; 2019 Nov; 13(6):564-573. PubMed ID: 31541519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerosol and bioaerosol particle size and dynamics from defective sanitary plumbing systems.
    Gormley M; Aspray TJ; Kelly DA
    Indoor Air; 2021 Sep; 31(5):1427-1440. PubMed ID: 33569864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments.
    An HR; Mainelis G; Yao M
    Indoor Air; 2004 Dec; 14(6):385-93. PubMed ID: 15500631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-flow portable biological aerosol trap (HighBioTrap) for rapid microbial detection.
    Chen H; Yao M
    J Aerosol Sci; 2018 Mar; 117():212-223. PubMed ID: 32372770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.